Step |
Hyp |
Ref |
Expression |
1 |
|
ccatcl |
|
2 |
|
ccatcl |
|
3 |
1 2
|
stoic3 |
|
4 |
|
wrdfn |
|
5 |
3 4
|
syl |
|
6 |
|
ccatlen |
|
7 |
1 6
|
stoic3 |
|
8 |
|
ccatlen |
|
9 |
8
|
3adant3 |
|
10 |
9
|
oveq1d |
|
11 |
7 10
|
eqtrd |
|
12 |
11
|
oveq2d |
|
13 |
12
|
fneq2d |
|
14 |
5 13
|
mpbid |
|
15 |
|
simp1 |
|
16 |
|
ccatcl |
|
17 |
16
|
3adant1 |
|
18 |
|
ccatcl |
|
19 |
15 17 18
|
syl2anc |
|
20 |
|
wrdfn |
|
21 |
19 20
|
syl |
|
22 |
|
ccatlen |
|
23 |
22
|
3adant1 |
|
24 |
23
|
oveq2d |
|
25 |
|
ccatlen |
|
26 |
15 17 25
|
syl2anc |
|
27 |
|
lencl |
|
28 |
27
|
3ad2ant1 |
|
29 |
28
|
nn0cnd |
|
30 |
|
lencl |
|
31 |
30
|
3ad2ant2 |
|
32 |
31
|
nn0cnd |
|
33 |
|
lencl |
|
34 |
33
|
3ad2ant3 |
|
35 |
34
|
nn0cnd |
|
36 |
29 32 35
|
addassd |
|
37 |
24 26 36
|
3eqtr4d |
|
38 |
37
|
oveq2d |
|
39 |
38
|
fneq2d |
|
40 |
21 39
|
mpbid |
|
41 |
28
|
nn0zd |
|
42 |
|
fzospliti |
|
43 |
42
|
ex |
|
44 |
41 43
|
mpan9 |
|
45 |
|
simp2 |
|
46 |
|
id |
|
47 |
|
ccatval1 |
|
48 |
15 45 46 47
|
syl2an3an |
|
49 |
1
|
3adant3 |
|
50 |
49
|
adantr |
|
51 |
|
simpl3 |
|
52 |
41
|
uzidd |
|
53 |
|
uzaddcl |
|
54 |
52 31 53
|
syl2anc |
|
55 |
|
fzoss2 |
|
56 |
54 55
|
syl |
|
57 |
9
|
oveq2d |
|
58 |
56 57
|
sseqtrrd |
|
59 |
58
|
sselda |
|
60 |
|
ccatval1 |
|
61 |
50 51 59 60
|
syl3anc |
|
62 |
|
ccatval1 |
|
63 |
15 17 46 62
|
syl2an3an |
|
64 |
48 61 63
|
3eqtr4d |
|
65 |
31
|
nn0zd |
|
66 |
41 65
|
zaddcld |
|
67 |
|
fzospliti |
|
68 |
67
|
ex |
|
69 |
66 68
|
mpan9 |
|
70 |
|
id |
|
71 |
|
ccatval2 |
|
72 |
15 45 70 71
|
syl2an3an |
|
73 |
|
simpl2 |
|
74 |
|
simpl3 |
|
75 |
|
fzosubel3 |
|
76 |
75
|
ex |
|
77 |
65 76
|
mpan9 |
|
78 |
|
ccatval1 |
|
79 |
73 74 77 78
|
syl3anc |
|
80 |
72 79
|
eqtr4d |
|
81 |
49
|
adantr |
|
82 |
|
fzoss1 |
|
83 |
|
nn0uz |
|
84 |
82 83
|
eleq2s |
|
85 |
28 84
|
syl |
|
86 |
85 57
|
sseqtrrd |
|
87 |
86
|
sselda |
|
88 |
81 74 87 60
|
syl3anc |
|
89 |
|
simpl1 |
|
90 |
17
|
adantr |
|
91 |
66
|
uzidd |
|
92 |
|
uzaddcl |
|
93 |
91 34 92
|
syl2anc |
|
94 |
|
fzoss2 |
|
95 |
93 94
|
syl |
|
96 |
24 36
|
eqtr4d |
|
97 |
96
|
oveq2d |
|
98 |
95 97
|
sseqtrrd |
|
99 |
98
|
sselda |
|
100 |
|
ccatval2 |
|
101 |
89 90 99 100
|
syl3anc |
|
102 |
80 88 101
|
3eqtr4d |
|
103 |
9
|
oveq2d |
|
104 |
103
|
adantr |
|
105 |
|
elfzoelz |
|
106 |
105
|
zcnd |
|
107 |
106
|
adantl |
|
108 |
29
|
adantr |
|
109 |
32
|
adantr |
|
110 |
107 108 109
|
subsub4d |
|
111 |
104 110
|
eqtr4d |
|
112 |
111
|
fveq2d |
|
113 |
|
simpl2 |
|
114 |
|
simpl3 |
|
115 |
36
|
oveq2d |
|
116 |
115
|
eleq2d |
|
117 |
116
|
biimpa |
|
118 |
34
|
nn0zd |
|
119 |
65 118
|
zaddcld |
|
120 |
41 65 119
|
3jca |
|
121 |
120
|
adantr |
|
122 |
|
fzosubel2 |
|
123 |
117 121 122
|
syl2anc |
|
124 |
|
ccatval2 |
|
125 |
113 114 123 124
|
syl3anc |
|
126 |
112 125
|
eqtr4d |
|
127 |
49
|
adantr |
|
128 |
9 10
|
oveq12d |
|
129 |
128
|
eleq2d |
|
130 |
129
|
biimpar |
|
131 |
|
ccatval2 |
|
132 |
127 114 130 131
|
syl3anc |
|
133 |
|
simpl1 |
|
134 |
17
|
adantr |
|
135 |
|
fzoss1 |
|
136 |
54 135
|
syl |
|
137 |
136 97
|
sseqtrrd |
|
138 |
137
|
sselda |
|
139 |
133 134 138 100
|
syl3anc |
|
140 |
126 132 139
|
3eqtr4d |
|
141 |
102 140
|
jaodan |
|
142 |
69 141
|
syldan |
|
143 |
64 142
|
jaodan |
|
144 |
44 143
|
syldan |
|
145 |
14 40 144
|
eqfnfvd |
|