Metamath Proof Explorer


Theorem ccatcl

Description: The concatenation of two words is a word. (Contributed by FL, 2-Feb-2014) (Proof shortened by Stefan O'Rear, 15-Aug-2015) (Proof shortened by AV, 29-Apr-2020)

Ref Expression
Assertion ccatcl S Word B T Word B S ++ T Word B

Proof

Step Hyp Ref Expression
1 ccatfval S Word B T Word B S ++ T = x 0 ..^ S + T if x 0 ..^ S S x T x S
2 wrdf S Word B S : 0 ..^ S B
3 2 ad2antrr S Word B T Word B x 0 ..^ S + T S : 0 ..^ S B
4 3 ffvelrnda S Word B T Word B x 0 ..^ S + T x 0 ..^ S S x B
5 wrdf T Word B T : 0 ..^ T B
6 5 ad3antlr S Word B T Word B x 0 ..^ S + T ¬ x 0 ..^ S T : 0 ..^ T B
7 simpr S Word B T Word B x 0 ..^ S + T x 0 ..^ S + T
8 7 anim1i S Word B T Word B x 0 ..^ S + T ¬ x 0 ..^ S x 0 ..^ S + T ¬ x 0 ..^ S
9 lencl S Word B S 0
10 9 nn0zd S Word B S
11 lencl T Word B T 0
12 11 nn0zd T Word B T
13 10 12 anim12i S Word B T Word B S T
14 13 ad2antrr S Word B T Word B x 0 ..^ S + T ¬ x 0 ..^ S S T
15 fzocatel x 0 ..^ S + T ¬ x 0 ..^ S S T x S 0 ..^ T
16 8 14 15 syl2anc S Word B T Word B x 0 ..^ S + T ¬ x 0 ..^ S x S 0 ..^ T
17 6 16 ffvelrnd S Word B T Word B x 0 ..^ S + T ¬ x 0 ..^ S T x S B
18 4 17 ifclda S Word B T Word B x 0 ..^ S + T if x 0 ..^ S S x T x S B
19 18 fmpttd S Word B T Word B x 0 ..^ S + T if x 0 ..^ S S x T x S : 0 ..^ S + T B
20 iswrdi x 0 ..^ S + T if x 0 ..^ S S x T x S : 0 ..^ S + T B x 0 ..^ S + T if x 0 ..^ S S x T x S Word B
21 19 20 syl S Word B T Word B x 0 ..^ S + T if x 0 ..^ S S x T x S Word B
22 1 21 eqeltrd S Word B T Word B S ++ T Word B