| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lenco |
|
| 2 |
1
|
3adant2 |
|
| 3 |
|
lenco |
|
| 4 |
3
|
3adant1 |
|
| 5 |
2 4
|
oveq12d |
|
| 6 |
5
|
oveq2d |
|
| 7 |
6
|
mpteq1d |
|
| 8 |
2
|
oveq2d |
|
| 9 |
8
|
adantr |
|
| 10 |
9
|
eleq2d |
|
| 11 |
10
|
ifbid |
|
| 12 |
|
wrdf |
|
| 13 |
12
|
3ad2ant1 |
|
| 14 |
13
|
adantr |
|
| 15 |
14
|
ffnd |
|
| 16 |
|
fvco2 |
|
| 17 |
15 16
|
sylan |
|
| 18 |
|
iftrue |
|
| 19 |
18
|
adantl |
|
| 20 |
17 19
|
eqtr4d |
|
| 21 |
|
wrdf |
|
| 22 |
21
|
3ad2ant2 |
|
| 23 |
22
|
ad2antrr |
|
| 24 |
23
|
ffnd |
|
| 25 |
|
lencl |
|
| 26 |
25
|
nn0zd |
|
| 27 |
26
|
3ad2ant1 |
|
| 28 |
|
fzospliti |
|
| 29 |
28
|
ancoms |
|
| 30 |
27 29
|
sylan |
|
| 31 |
30
|
orcanai |
|
| 32 |
|
lencl |
|
| 33 |
32
|
nn0zd |
|
| 34 |
33
|
3ad2ant2 |
|
| 35 |
34
|
ad2antrr |
|
| 36 |
|
fzosubel3 |
|
| 37 |
31 35 36
|
syl2anc |
|
| 38 |
|
fvco2 |
|
| 39 |
24 37 38
|
syl2anc |
|
| 40 |
2
|
oveq2d |
|
| 41 |
40
|
fveq2d |
|
| 42 |
41
|
ad2antrr |
|
| 43 |
|
iffalse |
|
| 44 |
43
|
adantl |
|
| 45 |
39 42 44
|
3eqtr4d |
|
| 46 |
20 45
|
ifeqda |
|
| 47 |
11 46
|
eqtrd |
|
| 48 |
47
|
mpteq2dva |
|
| 49 |
7 48
|
eqtr2d |
|
| 50 |
14
|
ffvelcdmda |
|
| 51 |
23 37
|
ffvelcdmd |
|
| 52 |
50 51
|
ifclda |
|
| 53 |
|
ccatfval |
|
| 54 |
53
|
3adant3 |
|
| 55 |
|
simp3 |
|
| 56 |
55
|
feqmptd |
|
| 57 |
|
fveq2 |
|
| 58 |
|
fvif |
|
| 59 |
57 58
|
eqtrdi |
|
| 60 |
52 54 56 59
|
fmptco |
|
| 61 |
|
ffun |
|
| 62 |
61
|
3ad2ant3 |
|
| 63 |
|
simp1 |
|
| 64 |
|
cofunexg |
|
| 65 |
62 63 64
|
syl2anc |
|
| 66 |
|
simp2 |
|
| 67 |
|
cofunexg |
|
| 68 |
62 66 67
|
syl2anc |
|
| 69 |
|
ccatfval |
|
| 70 |
65 68 69
|
syl2anc |
|
| 71 |
49 60 70
|
3eqtr4d |
|