Step |
Hyp |
Ref |
Expression |
1 |
|
lenco |
|
2 |
1
|
3adant2 |
|
3 |
|
lenco |
|
4 |
3
|
3adant1 |
|
5 |
2 4
|
oveq12d |
|
6 |
5
|
oveq2d |
|
7 |
6
|
mpteq1d |
|
8 |
2
|
oveq2d |
|
9 |
8
|
adantr |
|
10 |
9
|
eleq2d |
|
11 |
10
|
ifbid |
|
12 |
|
wrdf |
|
13 |
12
|
3ad2ant1 |
|
14 |
13
|
adantr |
|
15 |
14
|
ffnd |
|
16 |
|
fvco2 |
|
17 |
15 16
|
sylan |
|
18 |
|
iftrue |
|
19 |
18
|
adantl |
|
20 |
17 19
|
eqtr4d |
|
21 |
|
wrdf |
|
22 |
21
|
3ad2ant2 |
|
23 |
22
|
ad2antrr |
|
24 |
23
|
ffnd |
|
25 |
|
lencl |
|
26 |
25
|
nn0zd |
|
27 |
26
|
3ad2ant1 |
|
28 |
|
fzospliti |
|
29 |
28
|
ancoms |
|
30 |
27 29
|
sylan |
|
31 |
30
|
orcanai |
|
32 |
|
lencl |
|
33 |
32
|
nn0zd |
|
34 |
33
|
3ad2ant2 |
|
35 |
34
|
ad2antrr |
|
36 |
|
fzosubel3 |
|
37 |
31 35 36
|
syl2anc |
|
38 |
|
fvco2 |
|
39 |
24 37 38
|
syl2anc |
|
40 |
2
|
oveq2d |
|
41 |
40
|
fveq2d |
|
42 |
41
|
ad2antrr |
|
43 |
|
iffalse |
|
44 |
43
|
adantl |
|
45 |
39 42 44
|
3eqtr4d |
|
46 |
20 45
|
ifeqda |
|
47 |
11 46
|
eqtrd |
|
48 |
47
|
mpteq2dva |
|
49 |
7 48
|
eqtr2d |
|
50 |
14
|
ffvelrnda |
|
51 |
23 37
|
ffvelrnd |
|
52 |
50 51
|
ifclda |
|
53 |
|
ccatfval |
|
54 |
53
|
3adant3 |
|
55 |
|
simp3 |
|
56 |
55
|
feqmptd |
|
57 |
|
fveq2 |
|
58 |
|
fvif |
|
59 |
57 58
|
eqtrdi |
|
60 |
52 54 56 59
|
fmptco |
|
61 |
|
ffun |
|
62 |
61
|
3ad2ant3 |
|
63 |
|
simp1 |
|
64 |
|
cofunexg |
|
65 |
62 63 64
|
syl2anc |
|
66 |
|
simp2 |
|
67 |
|
cofunexg |
|
68 |
62 66 67
|
syl2anc |
|
69 |
|
ccatfval |
|
70 |
65 68 69
|
syl2anc |
|
71 |
49 60 70
|
3eqtr4d |
|