Metamath Proof Explorer


Theorem ccatdmss

Description: The domain of a concatenated word is a superset of the domain of the first word. (Contributed by Thierry Arnoux, 19-Jun-2025)

Ref Expression
Hypotheses ccatdmss.1 φ A Word S
ccatdmss.2 φ B Word S
Assertion ccatdmss φ dom A dom A ++ B

Proof

Step Hyp Ref Expression
1 ccatdmss.1 φ A Word S
2 ccatdmss.2 φ B Word S
3 lencl A Word S A 0
4 1 3 syl φ A 0
5 4 nn0zd φ A
6 ccatcl A Word S B Word S A ++ B Word S
7 1 2 6 syl2anc φ A ++ B Word S
8 lencl A ++ B Word S A ++ B 0
9 7 8 syl φ A ++ B 0
10 9 nn0zd φ A ++ B
11 4 nn0red φ A
12 lencl B Word S B 0
13 2 12 syl φ B 0
14 nn0addge1 A B 0 A A + B
15 11 13 14 syl2anc φ A A + B
16 ccatlen A Word S B Word S A ++ B = A + B
17 1 2 16 syl2anc φ A ++ B = A + B
18 15 17 breqtrrd φ A A ++ B
19 eluz2 A ++ B A A A ++ B A A ++ B
20 5 10 18 19 syl3anbrc φ A ++ B A
21 fzoss2 A ++ B A 0 ..^ A 0 ..^ A ++ B
22 20 21 syl φ 0 ..^ A 0 ..^ A ++ B
23 eqidd φ A = A
24 23 1 wrdfd φ A : 0 ..^ A S
25 24 fdmd φ dom A = 0 ..^ A
26 eqidd φ A ++ B = A ++ B
27 26 7 wrdfd φ A ++ B : 0 ..^ A ++ B S
28 27 fdmd φ dom A ++ B = 0 ..^ A ++ B
29 22 25 28 3sstr4d φ dom A dom A ++ B