Step |
Hyp |
Ref |
Expression |
1 |
|
ccatf1.s |
|
2 |
|
ccatf1.a |
|
3 |
|
ccatf1.b |
|
4 |
|
ccatf1.1 |
|
5 |
|
ccatf1.2 |
|
6 |
|
ccatf1.3 |
|
7 |
|
ccatcl |
|
8 |
2 3 7
|
syl2anc |
|
9 |
|
wrdf |
|
10 |
8 9
|
syl |
|
11 |
10
|
ffdmd |
|
12 |
|
simpllr |
|
13 |
|
id |
|
14 |
|
ccatval1 |
|
15 |
2 3 13 14
|
syl2an3an |
|
16 |
15
|
ad4ant13 |
|
17 |
|
id |
|
18 |
|
ccatval1 |
|
19 |
2 3 17 18
|
syl2an3an |
|
20 |
19
|
ad4ant14 |
|
21 |
12 16 20
|
3eqtr3d |
|
22 |
|
wrddm |
|
23 |
2 22
|
syl |
|
24 |
|
f1eq2 |
|
25 |
24
|
biimpa |
|
26 |
23 4 25
|
syl2anc |
|
27 |
|
dff13 |
|
28 |
27
|
simprbi |
|
29 |
26 28
|
syl |
|
30 |
29
|
r19.21bi |
|
31 |
30
|
r19.21bi |
|
32 |
31
|
adantllr |
|
33 |
21 32
|
mpd |
|
34 |
33
|
ex |
|
35 |
34
|
adantllr |
|
36 |
|
f1fun |
|
37 |
4 36
|
syl |
|
38 |
|
simpr |
|
39 |
23
|
adantr |
|
40 |
38 39
|
eleqtrrd |
|
41 |
|
fvelrn |
|
42 |
37 40 41
|
syl2an2r |
|
43 |
42
|
ad4ant13 |
|
44 |
|
simpllr |
|
45 |
15
|
ad4ant13 |
|
46 |
2
|
adantr |
|
47 |
3
|
adantr |
|
48 |
|
simpr |
|
49 |
|
ccatlen |
|
50 |
2 3 49
|
syl2anc |
|
51 |
50
|
oveq2d |
|
52 |
51
|
adantr |
|
53 |
48 52
|
eleqtrd |
|
54 |
|
ccatval2 |
|
55 |
46 47 53 54
|
syl3anc |
|
56 |
55
|
ad4ant14 |
|
57 |
44 45 56
|
3eqtr3d |
|
58 |
|
f1fun |
|
59 |
5 58
|
syl |
|
60 |
|
lencl |
|
61 |
3 60
|
syl |
|
62 |
61
|
nn0zd |
|
63 |
62
|
adantr |
|
64 |
|
fzosubel3 |
|
65 |
53 63 64
|
syl2anc |
|
66 |
|
wrddm |
|
67 |
3 66
|
syl |
|
68 |
67
|
adantr |
|
69 |
65 68
|
eleqtrrd |
|
70 |
|
fvelrn |
|
71 |
59 69 70
|
syl2an2r |
|
72 |
71
|
ad4ant14 |
|
73 |
57 72
|
eqeltrd |
|
74 |
43 73
|
elind |
|
75 |
6
|
ad3antrrr |
|
76 |
74 75
|
eleqtrd |
|
77 |
|
noel |
|
78 |
77
|
a1i |
|
79 |
76 78
|
pm2.21dd |
|
80 |
79
|
ex |
|
81 |
80
|
adantllr |
|
82 |
|
wrddm |
|
83 |
8 82
|
syl |
|
84 |
83
|
eleq2d |
|
85 |
84
|
biimpa |
|
86 |
|
lencl |
|
87 |
2 86
|
syl |
|
88 |
87
|
nn0zd |
|
89 |
88
|
adantr |
|
90 |
|
fzospliti |
|
91 |
85 89 90
|
syl2anc |
|
92 |
91
|
ad2antrr |
|
93 |
35 81 92
|
mpjaod |
|
94 |
93
|
ex |
|
95 |
94
|
adantlrl |
|
96 |
|
simpr |
|
97 |
23
|
adantr |
|
98 |
96 97
|
eleqtrrd |
|
99 |
|
fvelrn |
|
100 |
37 98 99
|
syl2an2r |
|
101 |
100
|
ad4ant14 |
|
102 |
|
simpllr |
|
103 |
2
|
adantr |
|
104 |
3
|
adantr |
|
105 |
|
simpr |
|
106 |
51
|
adantr |
|
107 |
105 106
|
eleqtrd |
|
108 |
|
ccatval2 |
|
109 |
103 104 107 108
|
syl3anc |
|
110 |
109
|
ad4ant13 |
|
111 |
19
|
ad4ant14 |
|
112 |
102 110 111
|
3eqtr3rd |
|
113 |
62
|
adantr |
|
114 |
|
fzosubel3 |
|
115 |
107 113 114
|
syl2anc |
|
116 |
67
|
adantr |
|
117 |
115 116
|
eleqtrrd |
|
118 |
|
fvelrn |
|
119 |
59 117 118
|
syl2an2r |
|
120 |
119
|
ad4ant13 |
|
121 |
112 120
|
eqeltrd |
|
122 |
101 121
|
elind |
|
123 |
6
|
ad3antrrr |
|
124 |
122 123
|
eleqtrd |
|
125 |
|
noel |
|
126 |
125
|
a1i |
|
127 |
124 126
|
pm2.21dd |
|
128 |
127
|
ex |
|
129 |
128
|
adantllr |
|
130 |
|
elfzoelz |
|
131 |
130
|
zcnd |
|
132 |
131
|
ad2antlr |
|
133 |
|
elfzoelz |
|
134 |
133
|
zcnd |
|
135 |
134
|
adantl |
|
136 |
87
|
nn0cnd |
|
137 |
136
|
ad3antrrr |
|
138 |
5
|
ad3antrrr |
|
139 |
117
|
ad4ant13 |
|
140 |
69
|
ad4ant14 |
|
141 |
139 140
|
jca |
|
142 |
|
simpllr |
|
143 |
109
|
ad4ant13 |
|
144 |
55
|
ad4ant14 |
|
145 |
142 143 144
|
3eqtr3d |
|
146 |
|
f1veqaeq |
|
147 |
146
|
imp |
|
148 |
138 141 145 147
|
syl21anc |
|
149 |
132 135 137 148
|
subcan2d |
|
150 |
149
|
ex |
|
151 |
150
|
adantllr |
|
152 |
91
|
ad2antrr |
|
153 |
129 151 152
|
mpjaod |
|
154 |
153
|
ex |
|
155 |
154
|
adantlrl |
|
156 |
83
|
eleq2d |
|
157 |
156
|
biimpa |
|
158 |
88
|
adantr |
|
159 |
|
fzospliti |
|
160 |
157 158 159
|
syl2anc |
|
161 |
160
|
adantrr |
|
162 |
161
|
adantr |
|
163 |
95 155 162
|
mpjaod |
|
164 |
163
|
ex |
|
165 |
164
|
ralrimivva |
|
166 |
|
dff13 |
|
167 |
11 165 166
|
sylanbrc |
|