Metamath Proof Explorer


Theorem ccatfv0

Description: The first symbol of a concatenation of two words is the first symbol of the first word if the first word is not empty. (Contributed by Alexander van der Vekens, 22-Sep-2018)

Ref Expression
Assertion ccatfv0 A Word V B Word V 0 < A A ++ B 0 = A 0

Proof

Step Hyp Ref Expression
1 lencl A Word V A 0
2 elnnnn0b A A 0 0 < A
3 2 biimpri A 0 0 < A A
4 1 3 sylan A Word V 0 < A A
5 lbfzo0 0 0 ..^ A A
6 4 5 sylibr A Word V 0 < A 0 0 ..^ A
7 6 3adant2 A Word V B Word V 0 < A 0 0 ..^ A
8 ccatval1 A Word V B Word V 0 0 ..^ A A ++ B 0 = A 0
9 7 8 syld3an3 A Word V B Word V 0 < A A ++ B 0 = A 0