Metamath Proof Explorer


Theorem ccatfval

Description: Value of the concatenation operator. (Contributed by Stefan O'Rear, 15-Aug-2015)

Ref Expression
Assertion ccatfval S V T W S ++ T = x 0 ..^ S + T if x 0 ..^ S S x T x S

Proof

Step Hyp Ref Expression
1 elex S V S V
2 elex T W T V
3 fveq2 s = S s = S
4 fveq2 t = T t = T
5 3 4 oveqan12d s = S t = T s + t = S + T
6 5 oveq2d s = S t = T 0 ..^ s + t = 0 ..^ S + T
7 3 oveq2d s = S 0 ..^ s = 0 ..^ S
8 7 eleq2d s = S x 0 ..^ s x 0 ..^ S
9 8 adantr s = S t = T x 0 ..^ s x 0 ..^ S
10 fveq1 s = S s x = S x
11 10 adantr s = S t = T s x = S x
12 simpr s = S t = T t = T
13 3 oveq2d s = S x s = x S
14 13 adantr s = S t = T x s = x S
15 12 14 fveq12d s = S t = T t x s = T x S
16 9 11 15 ifbieq12d s = S t = T if x 0 ..^ s s x t x s = if x 0 ..^ S S x T x S
17 6 16 mpteq12dv s = S t = T x 0 ..^ s + t if x 0 ..^ s s x t x s = x 0 ..^ S + T if x 0 ..^ S S x T x S
18 df-concat ++ = s V , t V x 0 ..^ s + t if x 0 ..^ s s x t x s
19 ovex 0 ..^ S + T V
20 19 mptex x 0 ..^ S + T if x 0 ..^ S S x T x S V
21 17 18 20 ovmpoa S V T V S ++ T = x 0 ..^ S + T if x 0 ..^ S S x T x S
22 1 2 21 syl2an S V T W S ++ T = x 0 ..^ S + T if x 0 ..^ S S x T x S