Database
REAL AND COMPLEX NUMBERS
Words over a set
Concatenations of words
ccatidid
Next ⟩
lswccatn0lsw
Metamath Proof Explorer
Ascii
Unicode
Theorem
ccatidid
Description:
Concatenation of the empty word by the empty word.
(Contributed by
AV
, 26-Mar-2022)
Ref
Expression
Assertion
ccatidid
⊢
∅
++
∅
=
∅
Proof
Step
Hyp
Ref
Expression
1
wrd0
⊢
∅
∈
Word
V
2
ccatlid
⊢
∅
∈
Word
V
→
∅
++
∅
=
∅
3
1
2
ax-mp
⊢
∅
++
∅
=
∅