Metamath Proof Explorer


Theorem ccatlid

Description: Concatenation of a word by the empty word on the left. (Contributed by Stefan O'Rear, 15-Aug-2015) (Proof shortened by AV, 1-May-2020)

Ref Expression
Assertion ccatlid S Word B ++ S = S

Proof

Step Hyp Ref Expression
1 wrd0 Word B
2 ccatvalfn Word B S Word B ++ S Fn 0 ..^ + S
3 1 2 mpan S Word B ++ S Fn 0 ..^ + S
4 hash0 = 0
5 4 oveq1i + S = 0 + S
6 lencl S Word B S 0
7 6 nn0cnd S Word B S
8 7 addid2d S Word B 0 + S = S
9 5 8 eqtrid S Word B + S = S
10 9 eqcomd S Word B S = + S
11 10 oveq2d S Word B 0 ..^ S = 0 ..^ + S
12 11 fneq2d S Word B ++ S Fn 0 ..^ S ++ S Fn 0 ..^ + S
13 3 12 mpbird S Word B ++ S Fn 0 ..^ S
14 wrdfn S Word B S Fn 0 ..^ S
15 4 a1i S Word B = 0
16 15 9 oveq12d S Word B ..^ + S = 0 ..^ S
17 16 eleq2d S Word B x ..^ + S x 0 ..^ S
18 17 biimpar S Word B x 0 ..^ S x ..^ + S
19 ccatval2 Word B S Word B x ..^ + S ++ S x = S x
20 1 19 mp3an1 S Word B x ..^ + S ++ S x = S x
21 18 20 syldan S Word B x 0 ..^ S ++ S x = S x
22 4 oveq2i x = x 0
23 elfzoelz x 0 ..^ S x
24 23 adantl S Word B x 0 ..^ S x
25 24 zcnd S Word B x 0 ..^ S x
26 25 subid1d S Word B x 0 ..^ S x 0 = x
27 22 26 eqtrid S Word B x 0 ..^ S x = x
28 27 fveq2d S Word B x 0 ..^ S S x = S x
29 21 28 eqtrd S Word B x 0 ..^ S ++ S x = S x
30 13 14 29 eqfnfvd S Word B ++ S = S