| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pfxcl |  | 
						
							| 2 |  | swrdcl |  | 
						
							| 3 |  | ccatcl |  | 
						
							| 4 | 1 2 3 | syl2anc |  | 
						
							| 5 |  | wrdfn |  | 
						
							| 6 | 4 5 | syl |  | 
						
							| 7 | 6 | adantr |  | 
						
							| 8 |  | ccatlen |  | 
						
							| 9 | 1 2 8 | syl2anc |  | 
						
							| 10 | 9 | adantr |  | 
						
							| 11 |  | fzass4 |  | 
						
							| 12 | 11 | biimpri |  | 
						
							| 13 | 12 | simpld |  | 
						
							| 14 |  | pfxlen |  | 
						
							| 15 | 13 14 | sylan2 |  | 
						
							| 16 |  | swrdlen |  | 
						
							| 17 | 16 | 3expb |  | 
						
							| 18 | 15 17 | oveq12d |  | 
						
							| 19 |  | elfzelz |  | 
						
							| 20 | 19 | zcnd |  | 
						
							| 21 |  | elfzelz |  | 
						
							| 22 | 21 | zcnd |  | 
						
							| 23 |  | pncan3 |  | 
						
							| 24 | 20 22 23 | syl2an |  | 
						
							| 25 | 24 | adantl |  | 
						
							| 26 | 10 18 25 | 3eqtrd |  | 
						
							| 27 | 26 | oveq2d |  | 
						
							| 28 | 27 | fneq2d |  | 
						
							| 29 | 7 28 | mpbid |  | 
						
							| 30 |  | pfxfn |  | 
						
							| 31 | 30 | adantrl |  | 
						
							| 32 |  | id |  | 
						
							| 33 | 19 | ad2antrl |  | 
						
							| 34 |  | fzospliti |  | 
						
							| 35 | 32 33 34 | syl2anr |  | 
						
							| 36 | 1 | ad2antrr |  | 
						
							| 37 | 2 | ad2antrr |  | 
						
							| 38 | 15 | oveq2d |  | 
						
							| 39 | 38 | eleq2d |  | 
						
							| 40 | 39 | biimpar |  | 
						
							| 41 |  | ccatval1 |  | 
						
							| 42 | 36 37 40 41 | syl3anc |  | 
						
							| 43 |  | simpl |  | 
						
							| 44 | 13 | adantl |  | 
						
							| 45 |  | id |  | 
						
							| 46 |  | pfxfv |  | 
						
							| 47 | 43 44 45 46 | syl2an3an |  | 
						
							| 48 | 42 47 | eqtrd |  | 
						
							| 49 | 1 | ad2antrr |  | 
						
							| 50 | 2 | ad2antrr |  | 
						
							| 51 | 18 25 | eqtrd |  | 
						
							| 52 | 15 51 | oveq12d |  | 
						
							| 53 | 52 | eleq2d |  | 
						
							| 54 | 53 | biimpar |  | 
						
							| 55 |  | ccatval2 |  | 
						
							| 56 | 49 50 54 55 | syl3anc |  | 
						
							| 57 |  | id |  | 
						
							| 58 | 57 | 3expb |  | 
						
							| 59 | 15 | oveq2d |  | 
						
							| 60 | 59 | adantr |  | 
						
							| 61 |  | id |  | 
						
							| 62 |  | fzosubel |  | 
						
							| 63 | 61 33 62 | syl2anr |  | 
						
							| 64 | 20 | subidd |  | 
						
							| 65 | 64 | oveq1d |  | 
						
							| 66 | 65 | eleq2d |  | 
						
							| 67 | 66 | ad2antrl |  | 
						
							| 68 | 67 | adantr |  | 
						
							| 69 | 63 68 | mpbid |  | 
						
							| 70 | 60 69 | eqeltrd |  | 
						
							| 71 |  | swrdfv |  | 
						
							| 72 | 58 70 71 | syl2an2r |  | 
						
							| 73 | 59 | oveq1d |  | 
						
							| 74 | 73 | adantr |  | 
						
							| 75 |  | elfzoelz |  | 
						
							| 76 | 75 | zcnd |  | 
						
							| 77 | 20 | ad2antrl |  | 
						
							| 78 |  | npcan |  | 
						
							| 79 | 76 77 78 | syl2anr |  | 
						
							| 80 | 74 79 | eqtrd |  | 
						
							| 81 | 80 | fveq2d |  | 
						
							| 82 | 56 72 81 | 3eqtrd |  | 
						
							| 83 | 48 82 | jaodan |  | 
						
							| 84 | 35 83 | syldan |  | 
						
							| 85 |  | pfxfv |  | 
						
							| 86 | 85 | 3expa |  | 
						
							| 87 | 86 | adantlrl |  | 
						
							| 88 | 84 87 | eqtr4d |  | 
						
							| 89 | 29 31 88 | eqfnfvd |  | 
						
							| 90 | 89 | 3impb |  |