Step |
Hyp |
Ref |
Expression |
1 |
|
pfxcl |
|
2 |
|
swrdcl |
|
3 |
|
ccatcl |
|
4 |
1 2 3
|
syl2anc |
|
5 |
|
wrdfn |
|
6 |
4 5
|
syl |
|
7 |
6
|
adantr |
|
8 |
|
ccatlen |
|
9 |
1 2 8
|
syl2anc |
|
10 |
9
|
adantr |
|
11 |
|
fzass4 |
|
12 |
11
|
biimpri |
|
13 |
12
|
simpld |
|
14 |
|
pfxlen |
|
15 |
13 14
|
sylan2 |
|
16 |
|
swrdlen |
|
17 |
16
|
3expb |
|
18 |
15 17
|
oveq12d |
|
19 |
|
elfzelz |
|
20 |
19
|
zcnd |
|
21 |
|
elfzelz |
|
22 |
21
|
zcnd |
|
23 |
|
pncan3 |
|
24 |
20 22 23
|
syl2an |
|
25 |
24
|
adantl |
|
26 |
10 18 25
|
3eqtrd |
|
27 |
26
|
oveq2d |
|
28 |
27
|
fneq2d |
|
29 |
7 28
|
mpbid |
|
30 |
|
pfxfn |
|
31 |
30
|
adantrl |
|
32 |
|
id |
|
33 |
19
|
ad2antrl |
|
34 |
|
fzospliti |
|
35 |
32 33 34
|
syl2anr |
|
36 |
1
|
ad2antrr |
|
37 |
2
|
ad2antrr |
|
38 |
15
|
oveq2d |
|
39 |
38
|
eleq2d |
|
40 |
39
|
biimpar |
|
41 |
|
ccatval1 |
|
42 |
36 37 40 41
|
syl3anc |
|
43 |
|
simpl |
|
44 |
13
|
adantl |
|
45 |
|
id |
|
46 |
|
pfxfv |
|
47 |
43 44 45 46
|
syl2an3an |
|
48 |
42 47
|
eqtrd |
|
49 |
1
|
ad2antrr |
|
50 |
2
|
ad2antrr |
|
51 |
18 25
|
eqtrd |
|
52 |
15 51
|
oveq12d |
|
53 |
52
|
eleq2d |
|
54 |
53
|
biimpar |
|
55 |
|
ccatval2 |
|
56 |
49 50 54 55
|
syl3anc |
|
57 |
|
id |
|
58 |
57
|
3expb |
|
59 |
15
|
oveq2d |
|
60 |
59
|
adantr |
|
61 |
|
id |
|
62 |
|
fzosubel |
|
63 |
61 33 62
|
syl2anr |
|
64 |
20
|
subidd |
|
65 |
64
|
oveq1d |
|
66 |
65
|
eleq2d |
|
67 |
66
|
ad2antrl |
|
68 |
67
|
adantr |
|
69 |
63 68
|
mpbid |
|
70 |
60 69
|
eqeltrd |
|
71 |
|
swrdfv |
|
72 |
58 70 71
|
syl2an2r |
|
73 |
59
|
oveq1d |
|
74 |
73
|
adantr |
|
75 |
|
elfzoelz |
|
76 |
75
|
zcnd |
|
77 |
20
|
ad2antrl |
|
78 |
|
npcan |
|
79 |
76 77 78
|
syl2anr |
|
80 |
74 79
|
eqtrd |
|
81 |
80
|
fveq2d |
|
82 |
56 72 81
|
3eqtrd |
|
83 |
48 82
|
jaodan |
|
84 |
35 83
|
syldan |
|
85 |
|
pfxfv |
|
86 |
85
|
3expa |
|
87 |
86
|
adantlrl |
|
88 |
84 87
|
eqtr4d |
|
89 |
29 31 88
|
eqfnfvd |
|
90 |
89
|
3impb |
|