Metamath Proof Explorer


Theorem ccatrcl1

Description: Reverse closure of a concatenation: If the concatenation of two arbitrary words is a word over an alphabet then the symbols of the first word belong to the alphabet. (Contributed by AV, 3-Mar-2021)

Ref Expression
Assertion ccatrcl1 A Word X B Word Y W = A ++ B W Word S A Word S

Proof

Step Hyp Ref Expression
1 eleq1 W = A ++ B W Word S A ++ B Word S
2 wrdv A Word X A Word V
3 wrdv B Word Y B Word V
4 ccatalpha A Word V B Word V A ++ B Word S A Word S B Word S
5 2 3 4 syl2an A Word X B Word Y A ++ B Word S A Word S B Word S
6 1 5 sylan9bbr A Word X B Word Y W = A ++ B W Word S A Word S B Word S
7 simpl A Word S B Word S A Word S
8 6 7 syl6bi A Word X B Word Y W = A ++ B W Word S A Word S
9 8 expimpd A Word X B Word Y W = A ++ B W Word S A Word S
10 9 3impia A Word X B Word Y W = A ++ B W Word S A Word S