Metamath Proof Explorer


Theorem ccatrid

Description: Concatenation of a word by the empty word on the right. (Contributed by Stefan O'Rear, 15-Aug-2015) (Proof shortened by AV, 1-May-2020)

Ref Expression
Assertion ccatrid S Word B S ++ = S

Proof

Step Hyp Ref Expression
1 wrd0 Word B
2 ccatvalfn S Word B Word B S ++ Fn 0 ..^ S +
3 1 2 mpan2 S Word B S ++ Fn 0 ..^ S +
4 hash0 = 0
5 4 oveq2i S + = S + 0
6 lencl S Word B S 0
7 6 nn0cnd S Word B S
8 7 addid1d S Word B S + 0 = S
9 5 8 eqtr2id S Word B S = S +
10 9 oveq2d S Word B 0 ..^ S = 0 ..^ S +
11 10 fneq2d S Word B S ++ Fn 0 ..^ S S ++ Fn 0 ..^ S +
12 3 11 mpbird S Word B S ++ Fn 0 ..^ S
13 wrdfn S Word B S Fn 0 ..^ S
14 ccatval1 S Word B Word B x 0 ..^ S S ++ x = S x
15 1 14 mp3an2 S Word B x 0 ..^ S S ++ x = S x
16 12 13 15 eqfnfvd S Word B S ++ = S