Metamath Proof Explorer


Theorem ccats1alpha

Description: A concatenation of a word with a singleton word is a word over an alphabet S iff the symbols of both words belong to the alphabet S . (Contributed by AV, 27-Mar-2022)

Ref Expression
Assertion ccats1alpha A Word V X U A ++ ⟨“ X ”⟩ Word S A Word S X S

Proof

Step Hyp Ref Expression
1 wrdv A Word V A Word V
2 s1cli ⟨“ X ”⟩ Word V
3 2 a1i X U ⟨“ X ”⟩ Word V
4 ccatalpha A Word V ⟨“ X ”⟩ Word V A ++ ⟨“ X ”⟩ Word S A Word S ⟨“ X ”⟩ Word S
5 1 3 4 syl2an A Word V X U A ++ ⟨“ X ”⟩ Word S A Word S ⟨“ X ”⟩ Word S
6 simpr X U ⟨“ X ”⟩ Word S ⟨“ X ”⟩ Word S
7 s1len ⟨“ X ”⟩ = 1
8 wrdl1exs1 ⟨“ X ”⟩ Word S ⟨“ X ”⟩ = 1 w S ⟨“ X ”⟩ = ⟨“ w ”⟩
9 6 7 8 sylancl X U ⟨“ X ”⟩ Word S w S ⟨“ X ”⟩ = ⟨“ w ”⟩
10 elex X U X V
11 10 adantr X U ⟨“ X ”⟩ Word S X V
12 elex w S w V
13 s111 X V w V ⟨“ X ”⟩ = ⟨“ w ”⟩ X = w
14 11 12 13 syl2an X U ⟨“ X ”⟩ Word S w S ⟨“ X ”⟩ = ⟨“ w ”⟩ X = w
15 simpr X U ⟨“ X ”⟩ Word S w S w S
16 eleq1 X = w X S w S
17 15 16 syl5ibrcom X U ⟨“ X ”⟩ Word S w S X = w X S
18 14 17 sylbid X U ⟨“ X ”⟩ Word S w S ⟨“ X ”⟩ = ⟨“ w ”⟩ X S
19 18 rexlimdva X U ⟨“ X ”⟩ Word S w S ⟨“ X ”⟩ = ⟨“ w ”⟩ X S
20 9 19 mpd X U ⟨“ X ”⟩ Word S X S
21 20 ex X U ⟨“ X ”⟩ Word S X S
22 s1cl X S ⟨“ X ”⟩ Word S
23 21 22 impbid1 X U ⟨“ X ”⟩ Word S X S
24 23 anbi2d X U A Word S ⟨“ X ”⟩ Word S A Word S X S
25 24 adantl A Word V X U A Word S ⟨“ X ”⟩ Word S A Word S X S
26 5 25 bitrd A Word V X U A ++ ⟨“ X ”⟩ Word S A Word S X S