Metamath Proof Explorer


Theorem ccats1pfxeqrex

Description: There exists a symbol such that its concatenation after the prefix obtained by deleting the last symbol of a nonempty word results in the word itself. (Contributed by AV, 5-Oct-2018) (Revised by AV, 9-May-2020)

Ref Expression
Assertion ccats1pfxeqrex W Word V U Word V U = W + 1 W = U prefix W s V U = W ++ ⟨“ s ”⟩

Proof

Step Hyp Ref Expression
1 simp2 W Word V U Word V U = W + 1 U Word V
2 lencl W Word V W 0
3 2 3ad2ant1 W Word V U Word V U = W + 1 W 0
4 nn0p1nn W 0 W + 1
5 nngt0 W + 1 0 < W + 1
6 3 4 5 3syl W Word V U Word V U = W + 1 0 < W + 1
7 breq2 U = W + 1 0 < U 0 < W + 1
8 7 3ad2ant3 W Word V U Word V U = W + 1 0 < U 0 < W + 1
9 6 8 mpbird W Word V U Word V U = W + 1 0 < U
10 hashgt0n0 U Word V 0 < U U
11 1 9 10 syl2anc W Word V U Word V U = W + 1 U
12 lswcl U Word V U lastS U V
13 1 11 12 syl2anc W Word V U Word V U = W + 1 lastS U V
14 ccats1pfxeq W Word V U Word V U = W + 1 W = U prefix W U = W ++ ⟨“ lastS U ”⟩
15 s1eq s = lastS U ⟨“ s ”⟩ = ⟨“ lastS U ”⟩
16 15 oveq2d s = lastS U W ++ ⟨“ s ”⟩ = W ++ ⟨“ lastS U ”⟩
17 16 rspceeqv lastS U V U = W ++ ⟨“ lastS U ”⟩ s V U = W ++ ⟨“ s ”⟩
18 13 14 17 syl6an W Word V U Word V U = W + 1 W = U prefix W s V U = W ++ ⟨“ s ”⟩