Metamath Proof Explorer


Theorem ccats1val2

Description: Value of the symbol concatenated with a word. (Contributed by Alexander van der Vekens, 5-Aug-2018) (Proof shortened by Alexander van der Vekens, 14-Oct-2018)

Ref Expression
Assertion ccats1val2 W Word V S V I = W W ++ ⟨“ S ”⟩ I = S

Proof

Step Hyp Ref Expression
1 simp1 W Word V S V I = W W Word V
2 s1cl S V ⟨“ S ”⟩ Word V
3 2 3ad2ant2 W Word V S V I = W ⟨“ S ”⟩ Word V
4 lencl W Word V W 0
5 4 nn0zd W Word V W
6 elfzomin W W W ..^ W + 1
7 5 6 syl W Word V W W ..^ W + 1
8 s1len ⟨“ S ”⟩ = 1
9 8 oveq2i W + ⟨“ S ”⟩ = W + 1
10 9 oveq2i W ..^ W + ⟨“ S ”⟩ = W ..^ W + 1
11 7 10 eleqtrrdi W Word V W W ..^ W + ⟨“ S ”⟩
12 11 adantr W Word V I = W W W ..^ W + ⟨“ S ”⟩
13 eleq1 I = W I W ..^ W + ⟨“ S ”⟩ W W ..^ W + ⟨“ S ”⟩
14 13 adantl W Word V I = W I W ..^ W + ⟨“ S ”⟩ W W ..^ W + ⟨“ S ”⟩
15 12 14 mpbird W Word V I = W I W ..^ W + ⟨“ S ”⟩
16 15 3adant2 W Word V S V I = W I W ..^ W + ⟨“ S ”⟩
17 ccatval2 W Word V ⟨“ S ”⟩ Word V I W ..^ W + ⟨“ S ”⟩ W ++ ⟨“ S ”⟩ I = ⟨“ S ”⟩ I W
18 1 3 16 17 syl3anc W Word V S V I = W W ++ ⟨“ S ”⟩ I = ⟨“ S ”⟩ I W
19 oveq1 I = W I W = W W
20 19 3ad2ant3 W Word V S V I = W I W = W W
21 4 nn0cnd W Word V W
22 21 subidd W Word V W W = 0
23 22 3ad2ant1 W Word V S V I = W W W = 0
24 20 23 eqtrd W Word V S V I = W I W = 0
25 24 fveq2d W Word V S V I = W ⟨“ S ”⟩ I W = ⟨“ S ”⟩ 0
26 s1fv S V ⟨“ S ”⟩ 0 = S
27 26 3ad2ant2 W Word V S V I = W ⟨“ S ”⟩ 0 = S
28 18 25 27 3eqtrd W Word V S V I = W W ++ ⟨“ S ”⟩ I = S