Step |
Hyp |
Ref |
Expression |
1 |
|
swrdcl |
|
2 |
1
|
adantr |
|
3 |
|
swrdcl |
|
4 |
3
|
adantr |
|
5 |
|
ccatcl |
|
6 |
2 4 5
|
syl2anc |
|
7 |
|
wrdfn |
|
8 |
6 7
|
syl |
|
9 |
|
ccatlen |
|
10 |
2 4 9
|
syl2anc |
|
11 |
|
simpl |
|
12 |
|
simpr1 |
|
13 |
|
simpr2 |
|
14 |
|
simpr3 |
|
15 |
|
fzass4 |
|
16 |
15
|
biimpri |
|
17 |
16
|
simpld |
|
18 |
13 14 17
|
syl2anc |
|
19 |
|
swrdlen |
|
20 |
11 12 18 19
|
syl3anc |
|
21 |
|
swrdlen |
|
22 |
21
|
3adant3r1 |
|
23 |
20 22
|
oveq12d |
|
24 |
13
|
elfzelzd |
|
25 |
24
|
zcnd |
|
26 |
12
|
elfzelzd |
|
27 |
26
|
zcnd |
|
28 |
14
|
elfzelzd |
|
29 |
28
|
zcnd |
|
30 |
25 27 29
|
npncan3d |
|
31 |
10 23 30
|
3eqtrd |
|
32 |
31
|
oveq2d |
|
33 |
32
|
fneq2d |
|
34 |
8 33
|
mpbid |
|
35 |
|
swrdcl |
|
36 |
35
|
adantr |
|
37 |
|
wrdfn |
|
38 |
36 37
|
syl |
|
39 |
|
fzass4 |
|
40 |
39
|
biimpri |
|
41 |
40
|
simpld |
|
42 |
12 13 41
|
syl2anc |
|
43 |
|
swrdlen |
|
44 |
11 42 14 43
|
syl3anc |
|
45 |
44
|
oveq2d |
|
46 |
45
|
fneq2d |
|
47 |
38 46
|
mpbid |
|
48 |
24 26
|
zsubcld |
|
49 |
48
|
anim1ci |
|
50 |
|
fzospliti |
|
51 |
49 50
|
syl |
|
52 |
1
|
ad2antrr |
|
53 |
3
|
ad2antrr |
|
54 |
20
|
oveq2d |
|
55 |
54
|
eleq2d |
|
56 |
55
|
biimpar |
|
57 |
|
ccatval1 |
|
58 |
52 53 56 57
|
syl3anc |
|
59 |
|
simpll |
|
60 |
|
simplr1 |
|
61 |
18
|
adantr |
|
62 |
|
simpr |
|
63 |
|
swrdfv |
|
64 |
59 60 61 62 63
|
syl31anc |
|
65 |
58 64
|
eqtrd |
|
66 |
1
|
ad2antrr |
|
67 |
3
|
ad2antrr |
|
68 |
23 30
|
eqtrd |
|
69 |
20 68
|
oveq12d |
|
70 |
69
|
eleq2d |
|
71 |
70
|
biimpar |
|
72 |
|
ccatval2 |
|
73 |
66 67 71 72
|
syl3anc |
|
74 |
|
simpll |
|
75 |
|
simplr2 |
|
76 |
|
simplr3 |
|
77 |
20
|
oveq2d |
|
78 |
77
|
adantr |
|
79 |
30
|
oveq2d |
|
80 |
79
|
eleq2d |
|
81 |
80
|
biimpar |
|
82 |
28 24
|
zsubcld |
|
83 |
82
|
adantr |
|
84 |
|
fzosubel3 |
|
85 |
81 83 84
|
syl2anc |
|
86 |
78 85
|
eqeltrd |
|
87 |
|
swrdfv |
|
88 |
74 75 76 86 87
|
syl31anc |
|
89 |
77
|
oveq1d |
|
90 |
89
|
adantr |
|
91 |
|
elfzoelz |
|
92 |
91
|
zcnd |
|
93 |
92
|
adantl |
|
94 |
25 27
|
subcld |
|
95 |
94
|
adantr |
|
96 |
25
|
adantr |
|
97 |
93 95 96
|
subadd23d |
|
98 |
25 27
|
nncand |
|
99 |
98
|
oveq2d |
|
100 |
99
|
adantr |
|
101 |
90 97 100
|
3eqtrd |
|
102 |
101
|
fveq2d |
|
103 |
73 88 102
|
3eqtrd |
|
104 |
65 103
|
jaodan |
|
105 |
51 104
|
syldan |
|
106 |
|
simpll |
|
107 |
42
|
adantr |
|
108 |
|
simplr3 |
|
109 |
|
simpr |
|
110 |
|
swrdfv |
|
111 |
106 107 108 109 110
|
syl31anc |
|
112 |
105 111
|
eqtr4d |
|
113 |
34 47 112
|
eqfnfvd |
|