Step |
Hyp |
Ref |
Expression |
1 |
|
simprll |
|
2 |
|
simpr |
|
3 |
2
|
anim2i |
|
4 |
|
simpr |
|
5 |
|
0zd |
|
6 |
|
lencl |
|
7 |
6
|
nn0zd |
|
8 |
7
|
ad2antrr |
|
9 |
|
elfzo |
|
10 |
4 5 8 9
|
syl3anc |
|
11 |
10
|
ad2antrl |
|
12 |
3 11
|
mpbird |
|
13 |
|
df-3an |
|
14 |
1 12 13
|
sylanbrc |
|
15 |
|
ccatval1 |
|
16 |
15
|
eqcomd |
|
17 |
14 16
|
syl |
|
18 |
17
|
ex |
|
19 |
|
zre |
|
20 |
|
0red |
|
21 |
19 20
|
ltnled |
|
22 |
21
|
adantl |
|
23 |
|
simpl |
|
24 |
23
|
anim1i |
|
25 |
24
|
adantr |
|
26 |
|
animorrl |
|
27 |
|
wrdsymb0 |
|
28 |
25 26 27
|
sylc |
|
29 |
|
ccatcl |
|
30 |
29
|
anim1i |
|
31 |
30
|
adantr |
|
32 |
|
animorrl |
|
33 |
|
wrdsymb0 |
|
34 |
31 32 33
|
sylc |
|
35 |
28 34
|
eqtr4d |
|
36 |
35
|
ex |
|
37 |
22 36
|
sylbird |
|
38 |
37
|
com12 |
|
39 |
38
|
adantrd |
|
40 |
18 39
|
pm2.61i |
|
41 |
|
simprll |
|
42 |
|
id |
|
43 |
6
|
nn0red |
|
44 |
|
lenlt |
|
45 |
43 19 44
|
syl2an |
|
46 |
45
|
adantlr |
|
47 |
46
|
biimpar |
|
48 |
42 47
|
anim12ci |
|
49 |
|
lencl |
|
50 |
49
|
nn0zd |
|
51 |
|
zaddcl |
|
52 |
7 50 51
|
syl2an |
|
53 |
52
|
adantr |
|
54 |
|
elfzo |
|
55 |
4 8 53 54
|
syl3anc |
|
56 |
55
|
ad2antrl |
|
57 |
48 56
|
mpbird |
|
58 |
|
df-3an |
|
59 |
41 57 58
|
sylanbrc |
|
60 |
|
ccatval2 |
|
61 |
60
|
eqcomd |
|
62 |
59 61
|
syl |
|
63 |
62
|
ex |
|
64 |
49
|
nn0red |
|
65 |
|
readdcl |
|
66 |
43 64 65
|
syl2an |
|
67 |
|
lenlt |
|
68 |
66 19 67
|
syl2an |
|
69 |
|
simplr |
|
70 |
|
simpr |
|
71 |
7
|
adantr |
|
72 |
70 71
|
zsubcld |
|
73 |
72
|
adantlr |
|
74 |
69 73
|
jca |
|
75 |
74
|
adantr |
|
76 |
43
|
ad2antrr |
|
77 |
64
|
ad2antlr |
|
78 |
19
|
adantl |
|
79 |
76 77 78
|
leaddsub2d |
|
80 |
79
|
biimpa |
|
81 |
80
|
olcd |
|
82 |
|
wrdsymb0 |
|
83 |
75 81 82
|
sylc |
|
84 |
30
|
adantr |
|
85 |
|
ccatlen |
|
86 |
85
|
ad2antrr |
|
87 |
|
simpr |
|
88 |
86 87
|
eqbrtrd |
|
89 |
88
|
olcd |
|
90 |
84 89 33
|
sylc |
|
91 |
83 90
|
eqtr4d |
|
92 |
91
|
ex |
|
93 |
68 92
|
sylbird |
|
94 |
93
|
com12 |
|
95 |
94
|
adantrd |
|
96 |
63 95
|
pm2.61i |
|
97 |
40 96
|
ifeqda |
|
98 |
97
|
eqcomd |
|
99 |
98
|
3impa |
|