Metamath Proof Explorer


Theorem ccatval1OLD

Description: Obsolete version of ccatval1 as of 18-Jan-2024. Value of a symbol in the left half of a concatenated word. (Contributed by Stefan O'Rear, 15-Aug-2015) (Revised by Mario Carneiro, 22-Sep-2015) (Proof shortened by AV, 30-Apr-2020) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion ccatval1OLD S Word B T Word B I 0 ..^ S S ++ T I = S I

Proof

Step Hyp Ref Expression
1 ccatfval S Word B T Word B S ++ T = x 0 ..^ S + T if x 0 ..^ S S x T x S
2 1 3adant3 S Word B T Word B I 0 ..^ S S ++ T = x 0 ..^ S + T if x 0 ..^ S S x T x S
3 eleq1 x = I x 0 ..^ S I 0 ..^ S
4 fveq2 x = I S x = S I
5 fvoveq1 x = I T x S = T I S
6 3 4 5 ifbieq12d x = I if x 0 ..^ S S x T x S = if I 0 ..^ S S I T I S
7 iftrue I 0 ..^ S if I 0 ..^ S S I T I S = S I
8 7 3ad2ant3 S Word B T Word B I 0 ..^ S if I 0 ..^ S S I T I S = S I
9 6 8 sylan9eqr S Word B T Word B I 0 ..^ S x = I if x 0 ..^ S S x T x S = S I
10 simp3 S Word B T Word B I 0 ..^ S I 0 ..^ S
11 lencl T Word B T 0
12 11 3ad2ant2 S Word B T Word B I 0 ..^ S T 0
13 elfzoext I 0 ..^ S T 0 I 0 ..^ S + T
14 10 12 13 syl2anc S Word B T Word B I 0 ..^ S I 0 ..^ S + T
15 fvexd S Word B T Word B I 0 ..^ S S I V
16 2 9 14 15 fvmptd S Word B T Word B I 0 ..^ S S ++ T I = S I