Metamath Proof Explorer


Theorem ccatval1lsw

Description: The last symbol of the left (nonempty) half of a concatenated word. (Contributed by Alexander van der Vekens, 3-Oct-2018) (Proof shortened by AV, 1-May-2020)

Ref Expression
Assertion ccatval1lsw A Word V B Word V A A ++ B A 1 = lastS A

Proof

Step Hyp Ref Expression
1 lennncl A Word V A A
2 1 3adant2 A Word V B Word V A A
3 fzo0end A A 1 0 ..^ A
4 2 3 syl A Word V B Word V A A 1 0 ..^ A
5 ccatval1 A Word V B Word V A 1 0 ..^ A A ++ B A 1 = A A 1
6 4 5 syld3an3 A Word V B Word V A A ++ B A 1 = A A 1
7 lsw A Word V lastS A = A A 1
8 7 3ad2ant1 A Word V B Word V A lastS A = A A 1
9 6 8 eqtr4d A Word V B Word V A A ++ B A 1 = lastS A