Metamath Proof Explorer


Theorem ccatval2

Description: Value of a symbol in the right half of a concatenated word. (Contributed by Stefan O'Rear, 15-Aug-2015) (Revised by Mario Carneiro, 22-Sep-2015)

Ref Expression
Assertion ccatval2 S Word B T Word B I S ..^ S + T S ++ T I = T I S

Proof

Step Hyp Ref Expression
1 ccatfval S Word B T Word B S ++ T = x 0 ..^ S + T if x 0 ..^ S S x T x S
2 1 3adant3 S Word B T Word B I S ..^ S + T S ++ T = x 0 ..^ S + T if x 0 ..^ S S x T x S
3 eleq1 x = I x 0 ..^ S I 0 ..^ S
4 fveq2 x = I S x = S I
5 fvoveq1 x = I T x S = T I S
6 3 4 5 ifbieq12d x = I if x 0 ..^ S S x T x S = if I 0 ..^ S S I T I S
7 fzodisj 0 ..^ S S ..^ S + T =
8 minel I S ..^ S + T 0 ..^ S S ..^ S + T = ¬ I 0 ..^ S
9 7 8 mpan2 I S ..^ S + T ¬ I 0 ..^ S
10 9 3ad2ant3 S Word B T Word B I S ..^ S + T ¬ I 0 ..^ S
11 10 iffalsed S Word B T Word B I S ..^ S + T if I 0 ..^ S S I T I S = T I S
12 6 11 sylan9eqr S Word B T Word B I S ..^ S + T x = I if x 0 ..^ S S x T x S = T I S
13 wrdfin S Word B S Fin
14 13 adantr S Word B T Word B S Fin
15 hashcl S Fin S 0
16 fzoss1 S 0 S ..^ S + T 0 ..^ S + T
17 nn0uz 0 = 0
18 16 17 eleq2s S 0 S ..^ S + T 0 ..^ S + T
19 14 15 18 3syl S Word B T Word B S ..^ S + T 0 ..^ S + T
20 19 sseld S Word B T Word B I S ..^ S + T I 0 ..^ S + T
21 20 3impia S Word B T Word B I S ..^ S + T I 0 ..^ S + T
22 fvexd S Word B T Word B I S ..^ S + T T I S V
23 2 12 21 22 fvmptd S Word B T Word B I S ..^ S + T S ++ T I = T I S