Metamath Proof Explorer


Theorem ccatval21sw

Description: The first symbol of the right (nonempty) half of a concatenated word. (Contributed by AV, 23-Apr-2022)

Ref Expression
Assertion ccatval21sw A Word V B Word V B A ++ B A = B 0

Proof

Step Hyp Ref Expression
1 lencl A Word V A 0
2 1 nn0zd A Word V A
3 lennncl B Word V B B
4 simpl A B A
5 nnz B B
6 zaddcl A B A + B
7 5 6 sylan2 A B A + B
8 nngt0 B 0 < B
9 8 adantl A B 0 < B
10 nnre B B
11 zre A A
12 ltaddpos B A 0 < B A < A + B
13 10 11 12 syl2anr A B 0 < B A < A + B
14 9 13 mpbid A B A < A + B
15 4 7 14 3jca A B A A + B A < A + B
16 2 3 15 syl2an A Word V B Word V B A A + B A < A + B
17 16 3impb A Word V B Word V B A A + B A < A + B
18 fzolb A A ..^ A + B A A + B A < A + B
19 17 18 sylibr A Word V B Word V B A A ..^ A + B
20 ccatval2 A Word V B Word V A A ..^ A + B A ++ B A = B A A
21 19 20 syld3an3 A Word V B Word V B A ++ B A = B A A
22 1 nn0cnd A Word V A
23 22 subidd A Word V A A = 0
24 23 fveq2d A Word V B A A = B 0
25 24 3ad2ant1 A Word V B Word V B B A A = B 0
26 21 25 eqtrd A Word V B Word V B A ++ B A = B 0