Metamath Proof Explorer


Theorem ccatval3

Description: Value of a symbol in the right half of a concatenated word, using an index relative to the subword. (Contributed by Stefan O'Rear, 16-Aug-2015) (Proof shortened by AV, 30-Apr-2020)

Ref Expression
Assertion ccatval3 S Word B T Word B I 0 ..^ T S ++ T I + S = T I

Proof

Step Hyp Ref Expression
1 lencl S Word B S 0
2 1 nn0zd S Word B S
3 2 anim1ci S Word B I 0 ..^ T I 0 ..^ T S
4 3 3adant2 S Word B T Word B I 0 ..^ T I 0 ..^ T S
5 fzo0addelr I 0 ..^ T S I + S S ..^ S + T
6 4 5 syl S Word B T Word B I 0 ..^ T I + S S ..^ S + T
7 ccatval2 S Word B T Word B I + S S ..^ S + T S ++ T I + S = T I + S - S
8 6 7 syld3an3 S Word B T Word B I 0 ..^ T S ++ T I + S = T I + S - S
9 elfzoelz I 0 ..^ T I
10 9 3ad2ant3 S Word B T Word B I 0 ..^ T I
11 10 zcnd S Word B T Word B I 0 ..^ T I
12 1 3ad2ant1 S Word B T Word B I 0 ..^ T S 0
13 12 nn0cnd S Word B T Word B I 0 ..^ T S
14 11 13 pncand S Word B T Word B I 0 ..^ T I + S - S = I
15 14 fveq2d S Word B T Word B I 0 ..^ T T I + S - S = T I
16 8 15 eqtrd S Word B T Word B I 0 ..^ T S ++ T I + S = T I