Metamath Proof Explorer


Theorem ccatvalfn

Description: The concatenation of two words is a function over the half-open integer range having the sum of the lengths of the word as length. (Contributed by Alexander van der Vekens, 30-Mar-2018)

Ref Expression
Assertion ccatvalfn A Word V B Word V A ++ B Fn 0 ..^ A + B

Proof

Step Hyp Ref Expression
1 ccatfval A Word V B Word V A ++ B = x 0 ..^ A + B if x 0 ..^ A A x B x A
2 fvex A x V
3 fvex B x A V
4 2 3 ifex if x 0 ..^ A A x B x A V
5 eqid x 0 ..^ A + B if x 0 ..^ A A x B x A = x 0 ..^ A + B if x 0 ..^ A A x B x A
6 4 5 fnmpti x 0 ..^ A + B if x 0 ..^ A A x B x A Fn 0 ..^ A + B
7 fneq1 A ++ B = x 0 ..^ A + B if x 0 ..^ A A x B x A A ++ B Fn 0 ..^ A + B x 0 ..^ A + B if x 0 ..^ A A x B x A Fn 0 ..^ A + B
8 6 7 mpbiri A ++ B = x 0 ..^ A + B if x 0 ..^ A A x B x A A ++ B Fn 0 ..^ A + B
9 1 8 syl A Word V B Word V A ++ B Fn 0 ..^ A + B