Metamath Proof Explorer


Theorem ccatw2s1ass

Description: Associative law for a concatenation of a word with two singleton words. (Contributed by Alexander van der Vekens, 22-Sep-2018)

Ref Expression
Assertion ccatw2s1ass W Word V W ++ ⟨“ X ”⟩ ++ ⟨“ Y ”⟩ = W ++ ⟨“ X ”⟩ ++ ⟨“ Y ”⟩

Proof

Step Hyp Ref Expression
1 wrdv W Word V W Word V
2 s1cli ⟨“ X ”⟩ Word V
3 2 a1i W Word V ⟨“ X ”⟩ Word V
4 s1cli ⟨“ Y ”⟩ Word V
5 4 a1i W Word V ⟨“ Y ”⟩ Word V
6 ccatass W Word V ⟨“ X ”⟩ Word V ⟨“ Y ”⟩ Word V W ++ ⟨“ X ”⟩ ++ ⟨“ Y ”⟩ = W ++ ⟨“ X ”⟩ ++ ⟨“ Y ”⟩
7 1 3 5 6 syl3anc W Word V W ++ ⟨“ X ”⟩ ++ ⟨“ Y ”⟩ = W ++ ⟨“ X ”⟩ ++ ⟨“ Y ”⟩