Metamath Proof Explorer


Theorem ccatw2s1assOLD

Description: Obsolete version of ccatw2s1ass as of 29-Jan-2024. Associative law for a concatenation of a word with two singleton words. (Contributed by Alexander van der Vekens, 22-Sep-2018) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion ccatw2s1assOLD W Word V X V Y V W ++ ⟨“ X ”⟩ ++ ⟨“ Y ”⟩ = W ++ ⟨“ X ”⟩ ++ ⟨“ Y ”⟩

Proof

Step Hyp Ref Expression
1 id W Word V W Word V
2 s1cl X V ⟨“ X ”⟩ Word V
3 s1cl Y V ⟨“ Y ”⟩ Word V
4 ccatass W Word V ⟨“ X ”⟩ Word V ⟨“ Y ”⟩ Word V W ++ ⟨“ X ”⟩ ++ ⟨“ Y ”⟩ = W ++ ⟨“ X ”⟩ ++ ⟨“ Y ”⟩
5 1 2 3 4 syl3an W Word V X V Y V W ++ ⟨“ X ”⟩ ++ ⟨“ Y ”⟩ = W ++ ⟨“ X ”⟩ ++ ⟨“ Y ”⟩