Metamath Proof Explorer


Theorem ccatw2s1ccatws2

Description: The concatenation of a word with two singleton words equals the concatenation of the word with the doubleton word consisting of the symbols of the two singletons. (Contributed by Mario Carneiro/AV, 21-Oct-2018) (Revised by AV, 29-Jan-2024)

Ref Expression
Assertion ccatw2s1ccatws2 W Word V W ++ ⟨“ X ”⟩ ++ ⟨“ Y ”⟩ = W ++ ⟨“ XY ”⟩

Proof

Step Hyp Ref Expression
1 ccatw2s1ass W Word V W ++ ⟨“ X ”⟩ ++ ⟨“ Y ”⟩ = W ++ ⟨“ X ”⟩ ++ ⟨“ Y ”⟩
2 df-s2 ⟨“ XY ”⟩ = ⟨“ X ”⟩ ++ ⟨“ Y ”⟩
3 2 eqcomi ⟨“ X ”⟩ ++ ⟨“ Y ”⟩ = ⟨“ XY ”⟩
4 3 a1i W Word V ⟨“ X ”⟩ ++ ⟨“ Y ”⟩ = ⟨“ XY ”⟩
5 4 oveq2d W Word V W ++ ⟨“ X ”⟩ ++ ⟨“ Y ”⟩ = W ++ ⟨“ XY ”⟩
6 1 5 eqtrd W Word V W ++ ⟨“ X ”⟩ ++ ⟨“ Y ”⟩ = W ++ ⟨“ XY ”⟩