Metamath Proof Explorer


Theorem ccatw2s1cl

Description: The concatenation of a word with two singleton words is a word. (Contributed by Alexander van der Vekens, 22-Sep-2018)

Ref Expression
Assertion ccatw2s1cl W Word V X V Y V W ++ ⟨“ X ”⟩ ++ ⟨“ Y ”⟩ Word V

Proof

Step Hyp Ref Expression
1 ccatws1cl W Word V X V W ++ ⟨“ X ”⟩ Word V
2 ccatws1cl W ++ ⟨“ X ”⟩ Word V Y V W ++ ⟨“ X ”⟩ ++ ⟨“ Y ”⟩ Word V
3 1 2 stoic3 W Word V X V Y V W ++ ⟨“ X ”⟩ ++ ⟨“ Y ”⟩ Word V