Metamath Proof Explorer


Theorem ccatw2s1p2

Description: Extract the second of two single symbols concatenated with a word. (Contributed by Alexander van der Vekens, 22-Sep-2018) (Proof shortened by AV, 1-May-2020)

Ref Expression
Assertion ccatw2s1p2 WWordVW=NXVYVW++⟨“X”⟩++⟨“Y”⟩N+1=Y

Proof

Step Hyp Ref Expression
1 ccatws1cl WWordVXVW++⟨“X”⟩WordV
2 1 ad2ant2r WWordVW=NXVYVW++⟨“X”⟩WordV
3 simprr WWordVW=NXVYVYV
4 ccatws1len WWordVW++⟨“X”⟩=W+1
5 4 ad2antrr WWordVW=NXVYVW++⟨“X”⟩=W+1
6 oveq1 W=NW+1=N+1
7 6 ad2antlr WWordVW=NXVYVW+1=N+1
8 5 7 eqtr2d WWordVW=NXVYVN+1=W++⟨“X”⟩
9 ccats1val2 W++⟨“X”⟩WordVYVN+1=W++⟨“X”⟩W++⟨“X”⟩++⟨“Y”⟩N+1=Y
10 2 3 8 9 syl3anc WWordVW=NXVYVW++⟨“X”⟩++⟨“Y”⟩N+1=Y