Metamath Proof Explorer


Theorem ccatw2s1p2

Description: Extract the second of two single symbols concatenated with a word. (Contributed by Alexander van der Vekens, 22-Sep-2018) (Proof shortened by AV, 1-May-2020)

Ref Expression
Assertion ccatw2s1p2 W Word V W = N X V Y V W ++ ⟨“ X ”⟩ ++ ⟨“ Y ”⟩ N + 1 = Y

Proof

Step Hyp Ref Expression
1 ccatws1cl W Word V X V W ++ ⟨“ X ”⟩ Word V
2 1 ad2ant2r W Word V W = N X V Y V W ++ ⟨“ X ”⟩ Word V
3 simprr W Word V W = N X V Y V Y V
4 ccatws1len W Word V W ++ ⟨“ X ”⟩ = W + 1
5 4 ad2antrr W Word V W = N X V Y V W ++ ⟨“ X ”⟩ = W + 1
6 oveq1 W = N W + 1 = N + 1
7 6 ad2antlr W Word V W = N X V Y V W + 1 = N + 1
8 5 7 eqtr2d W Word V W = N X V Y V N + 1 = W ++ ⟨“ X ”⟩
9 ccats1val2 W ++ ⟨“ X ”⟩ Word V Y V N + 1 = W ++ ⟨“ X ”⟩ W ++ ⟨“ X ”⟩ ++ ⟨“ Y ”⟩ N + 1 = Y
10 2 3 8 9 syl3anc W Word V W = N X V Y V W ++ ⟨“ X ”⟩ ++ ⟨“ Y ”⟩ N + 1 = Y