Metamath Proof Explorer


Theorem ccatws1cl

Description: The concatenation of a word with a singleton word is a word. (Contributed by Alexander van der Vekens, 22-Sep-2018)

Ref Expression
Assertion ccatws1cl W Word V X V W ++ ⟨“ X ”⟩ Word V

Proof

Step Hyp Ref Expression
1 s1cl X V ⟨“ X ”⟩ Word V
2 ccatcl W Word V ⟨“ X ”⟩ Word V W ++ ⟨“ X ”⟩ Word V
3 1 2 sylan2 W Word V X V W ++ ⟨“ X ”⟩ Word V