Step |
Hyp |
Ref |
Expression |
1 |
|
ccatws1f1o.1 |
|
2 |
|
ccatws1f1o.2 |
|
3 |
|
ccatws1f1o.3 |
|
4 |
|
f1of |
|
5 |
3 4
|
syl |
|
6 |
|
iswrdi |
|
7 |
|
lencl |
|
8 |
5 6 7
|
3syl |
|
9 |
1 8
|
eqeltrid |
|
10 |
|
fzossfzop1 |
|
11 |
9 10
|
syl |
|
12 |
11 2
|
sseqtrrdi |
|
13 |
12
|
adantr |
|
14 |
5
|
adantr |
|
15 |
1
|
eqcomi |
|
16 |
15
|
a1i |
|
17 |
16
|
oveq2d |
|
18 |
17
|
eleq2d |
|
19 |
18
|
biimpa |
|
20 |
14 19
|
ffvelcdmd |
|
21 |
13 20
|
sseldd |
|
22 |
21
|
adantlr |
|
23 |
2
|
a1i |
|
24 |
|
fzo0ssnn0 |
|
25 |
23 24
|
eqsstrdi |
|
26 |
25
|
sselda |
|
27 |
26
|
nn0cnd |
|
28 |
27
|
adantr |
|
29 |
|
nn0uz |
|
30 |
9 29
|
eleqtrdi |
|
31 |
30
|
ad2antrr |
|
32 |
23
|
eleq2d |
|
33 |
32
|
biimpa |
|
34 |
33
|
adantr |
|
35 |
|
fzosplitsni |
|
36 |
35
|
biimpa |
|
37 |
31 34 36
|
syl2anc |
|
38 |
18
|
notbid |
|
39 |
38
|
biimpa |
|
40 |
39
|
adantlr |
|
41 |
37 40
|
orcnd |
|
42 |
41 1
|
eqtrdi |
|
43 |
28 42
|
subeq0bd |
|
44 |
43
|
fveq2d |
|
45 |
|
s1fv |
|
46 |
9 45
|
syl |
|
47 |
46
|
ad2antrr |
|
48 |
44 47
|
eqtrd |
|
49 |
|
fzonn0p1 |
|
50 |
9 49
|
syl |
|
51 |
50 2
|
eleqtrrdi |
|
52 |
51
|
ad2antrr |
|
53 |
48 52
|
eqeltrd |
|
54 |
22 53
|
ifclda |
|
55 |
54
|
ralrimiva |
|
56 |
12
|
ad2antrr |
|
57 |
|
f1ocnv |
|
58 |
|
f1of |
|
59 |
3 57 58
|
3syl |
|
60 |
59
|
adantr |
|
61 |
60
|
ffvelcdmda |
|
62 |
56 61
|
sseldd |
|
63 |
1
|
oveq2i |
|
64 |
61 63
|
eleqtrdi |
|
65 |
64
|
iftrued |
|
66 |
3
|
ad2antrr |
|
67 |
|
simpr |
|
68 |
|
f1ocnvfv2 |
|
69 |
66 67 68
|
syl2anc |
|
70 |
65 69
|
eqtr2d |
|
71 |
|
simpr |
|
72 |
30
|
adantr |
|
73 |
72 33 36
|
syl2anc |
|
74 |
73
|
ad5ant14 |
|
75 |
67
|
ad3antrrr |
|
76 |
71
|
adantr |
|
77 |
|
simpr |
|
78 |
|
fzonel |
|
79 |
78
|
a1i |
|
80 |
63
|
eleq2i |
|
81 |
79 80
|
sylnib |
|
82 |
77 81
|
eqneltrd |
|
83 |
82
|
iffalsed |
|
84 |
2 24
|
eqsstri |
|
85 |
|
simpllr |
|
86 |
84 85
|
sselid |
|
87 |
86
|
nn0cnd |
|
88 |
77 1
|
eqtrdi |
|
89 |
87 88
|
subeq0bd |
|
90 |
89
|
fveq2d |
|
91 |
46
|
ad5antr |
|
92 |
90 91
|
eqtrd |
|
93 |
76 83 92
|
3eqtrd |
|
94 |
93 79
|
eqneltrd |
|
95 |
75 94
|
pm2.65da |
|
96 |
74 95
|
olcnd |
|
97 |
96 63
|
eleqtrdi |
|
98 |
97
|
iftrued |
|
99 |
71 98
|
eqtrd |
|
100 |
99
|
fveq2d |
|
101 |
66
|
ad2antrr |
|
102 |
|
f1ocnvfv1 |
|
103 |
101 96 102
|
syl2anc |
|
104 |
100 103
|
eqtr2d |
|
105 |
104
|
ex |
|
106 |
105
|
ralrimiva |
|
107 |
|
eleq1 |
|
108 |
|
fveq2 |
|
109 |
|
fvoveq1 |
|
110 |
107 108 109
|
ifbieq12d |
|
111 |
110
|
eqeq2d |
|
112 |
111
|
eqreu |
|
113 |
62 70 106 112
|
syl3anc |
|
114 |
51
|
ad2antrr |
|
115 |
9
|
nn0cnd |
|
116 |
115
|
ad2antrr |
|
117 |
1
|
a1i |
|
118 |
116 117
|
subeq0bd |
|
119 |
118
|
fveq2d |
|
120 |
46
|
ad2antrr |
|
121 |
119 120
|
eqtrd |
|
122 |
78
|
a1i |
|
123 |
122 80
|
sylnib |
|
124 |
123
|
iffalsed |
|
125 |
|
simpr |
|
126 |
121 124 125
|
3eqtr4rd |
|
127 |
30
|
adantr |
|
128 |
127
|
ad3antrrr |
|
129 |
33
|
ad5ant14 |
|
130 |
128 129 36
|
syl2anc |
|
131 |
|
simpr |
|
132 |
|
simpllr |
|
133 |
131 132
|
eqtr3d |
|
134 |
133
|
adantr |
|
135 |
63
|
a1i |
|
136 |
135
|
eleq2d |
|
137 |
136
|
biimpa |
|
138 |
137
|
iftrued |
|
139 |
5
|
ad4antr |
|
140 |
139
|
ffvelcdmda |
|
141 |
138 140
|
eqeltrd |
|
142 |
134 141
|
eqeltrrd |
|
143 |
78
|
a1i |
|
144 |
142 143
|
pm2.65da |
|
145 |
130 144
|
orcnd |
|
146 |
145
|
ex |
|
147 |
146
|
ralrimiva |
|
148 |
|
eleq1 |
|
149 |
|
fveq2 |
|
150 |
|
fvoveq1 |
|
151 |
148 149 150
|
ifbieq12d |
|
152 |
151
|
eqeq2d |
|
153 |
152
|
eqreu |
|
154 |
114 126 147 153
|
syl3anc |
|
155 |
23
|
eleq2d |
|
156 |
155
|
biimpa |
|
157 |
|
fzosplitsni |
|
158 |
157
|
biimpa |
|
159 |
127 156 158
|
syl2anc |
|
160 |
113 154 159
|
mpjaodan |
|
161 |
160
|
ralrimiva |
|
162 |
|
s1len |
|
163 |
15 162
|
oveq12i |
|
164 |
163
|
oveq2i |
|
165 |
164 2
|
eqtr4i |
|
166 |
165
|
mpteq1i |
|
167 |
166
|
f1ompt |
|
168 |
55 161 167
|
sylanbrc |
|
169 |
|
ovex |
|
170 |
|
fex |
|
171 |
5 169 170
|
sylancl |
|
172 |
|
s1cli |
|
173 |
|
ccatfval |
|
174 |
171 172 173
|
sylancl |
|
175 |
174
|
f1oeq1d |
|
176 |
168 175
|
mpbird |
|