Metamath Proof Explorer


Theorem ccatws1n0

Description: The concatenation of a word with a singleton word is not the empty set. (Contributed by Alexander van der Vekens, 29-Sep-2018) (Revised by AV, 5-Mar-2022)

Ref Expression
Assertion ccatws1n0 W Word V W ++ ⟨“ X ”⟩

Proof

Step Hyp Ref Expression
1 lencl W Word V W 0
2 nn0p1gt0 W 0 0 < W + 1
3 1 2 syl W Word V 0 < W + 1
4 ccatws1len W Word V W ++ ⟨“ X ”⟩ = W + 1
5 3 4 breqtrrd W Word V 0 < W ++ ⟨“ X ”⟩
6 ovex W ++ ⟨“ X ”⟩ V
7 hashneq0 W ++ ⟨“ X ”⟩ V 0 < W ++ ⟨“ X ”⟩ W ++ ⟨“ X ”⟩
8 6 7 ax-mp 0 < W ++ ⟨“ X ”⟩ W ++ ⟨“ X ”⟩
9 5 8 sylib W Word V W ++ ⟨“ X ”⟩