Metamath Proof Explorer


Theorem cdaf

Description: The codomain function is a function from arrows to objects. (Contributed by Mario Carneiro, 11-Jan-2017)

Ref Expression
Hypotheses arwrcl.a A = Arrow C
arwdm.b B = Base C
Assertion cdaf cod a A : A B

Proof

Step Hyp Ref Expression
1 arwrcl.a A = Arrow C
2 arwdm.b B = Base C
3 fo2nd 2 nd : V onto V
4 fofn 2 nd : V onto V 2 nd Fn V
5 3 4 ax-mp 2 nd Fn V
6 fo1st 1 st : V onto V
7 fof 1 st : V onto V 1 st : V V
8 6 7 ax-mp 1 st : V V
9 fnfco 2 nd Fn V 1 st : V V 2 nd 1 st Fn V
10 5 8 9 mp2an 2 nd 1 st Fn V
11 df-coda cod a = 2 nd 1 st
12 11 fneq1i cod a Fn V 2 nd 1 st Fn V
13 10 12 mpbir cod a Fn V
14 ssv A V
15 fnssres cod a Fn V A V cod a A Fn A
16 13 14 15 mp2an cod a A Fn A
17 fvres x A cod a A x = cod a x
18 1 2 arwcd x A cod a x B
19 17 18 eqeltrd x A cod a A x B
20 19 rgen x A cod a A x B
21 ffnfv cod a A : A B cod a A Fn A x A cod a A x B
22 16 20 21 mpbir2an cod a A : A B