Metamath Proof Explorer


Theorem cdlemb

Description: Given two atoms not less than or equal to an element covered by 1, there is a third. Lemma B in Crawley p. 112. (Contributed by NM, 8-May-2012)

Ref Expression
Hypotheses cdlemb.b B = Base K
cdlemb.l ˙ = K
cdlemb.j ˙ = join K
cdlemb.u 1 ˙ = 1. K
cdlemb.c C = K
cdlemb.a A = Atoms K
Assertion cdlemb K HL P A Q A X B P Q X C 1 ˙ ¬ P ˙ X ¬ Q ˙ X r A ¬ r ˙ X ¬ r ˙ P ˙ Q

Proof

Step Hyp Ref Expression
1 cdlemb.b B = Base K
2 cdlemb.l ˙ = K
3 cdlemb.j ˙ = join K
4 cdlemb.u 1 ˙ = 1. K
5 cdlemb.c C = K
6 cdlemb.a A = Atoms K
7 simp11 K HL P A Q A X B P Q X C 1 ˙ ¬ P ˙ X ¬ Q ˙ X K HL
8 simp12 K HL P A Q A X B P Q X C 1 ˙ ¬ P ˙ X ¬ Q ˙ X P A
9 simp13 K HL P A Q A X B P Q X C 1 ˙ ¬ P ˙ X ¬ Q ˙ X Q A
10 simp2l K HL P A Q A X B P Q X C 1 ˙ ¬ P ˙ X ¬ Q ˙ X X B
11 simp2r K HL P A Q A X B P Q X C 1 ˙ ¬ P ˙ X ¬ Q ˙ X P Q
12 simp31 K HL P A Q A X B P Q X C 1 ˙ ¬ P ˙ X ¬ Q ˙ X X C 1 ˙
13 simp32 K HL P A Q A X B P Q X C 1 ˙ ¬ P ˙ X ¬ Q ˙ X ¬ P ˙ X
14 eqid meet K = meet K
15 1 2 3 14 4 5 6 1cvrat K HL P A Q A X B P Q X C 1 ˙ ¬ P ˙ X P ˙ Q meet K X A
16 7 8 9 10 11 12 13 15 syl133anc K HL P A Q A X B P Q X C 1 ˙ ¬ P ˙ X ¬ Q ˙ X P ˙ Q meet K X A
17 7 hllatd K HL P A Q A X B P Q X C 1 ˙ ¬ P ˙ X ¬ Q ˙ X K Lat
18 1 6 atbase P A P B
19 8 18 syl K HL P A Q A X B P Q X C 1 ˙ ¬ P ˙ X ¬ Q ˙ X P B
20 1 6 atbase Q A Q B
21 9 20 syl K HL P A Q A X B P Q X C 1 ˙ ¬ P ˙ X ¬ Q ˙ X Q B
22 1 3 latjcl K Lat P B Q B P ˙ Q B
23 17 19 21 22 syl3anc K HL P A Q A X B P Q X C 1 ˙ ¬ P ˙ X ¬ Q ˙ X P ˙ Q B
24 1 2 14 latmle2 K Lat P ˙ Q B X B P ˙ Q meet K X ˙ X
25 17 23 10 24 syl3anc K HL P A Q A X B P Q X C 1 ˙ ¬ P ˙ X ¬ Q ˙ X P ˙ Q meet K X ˙ X
26 eqid < K = < K
27 1 2 26 4 5 6 1cvratlt K HL P ˙ Q meet K X A X B X C 1 ˙ P ˙ Q meet K X ˙ X P ˙ Q meet K X < K X
28 7 16 10 12 25 27 syl32anc K HL P A Q A X B P Q X C 1 ˙ ¬ P ˙ X ¬ Q ˙ X P ˙ Q meet K X < K X
29 1 26 6 2atlt K HL P ˙ Q meet K X A X B P ˙ Q meet K X < K X u A u P ˙ Q meet K X u < K X
30 7 16 10 28 29 syl31anc K HL P A Q A X B P Q X C 1 ˙ ¬ P ˙ X ¬ Q ˙ X u A u P ˙ Q meet K X u < K X
31 simpl11 K HL P A Q A X B P Q X C 1 ˙ ¬ P ˙ X ¬ Q ˙ X u A u P ˙ Q meet K X u < K X K HL
32 simpl12 K HL P A Q A X B P Q X C 1 ˙ ¬ P ˙ X ¬ Q ˙ X u A u P ˙ Q meet K X u < K X P A
33 simprl K HL P A Q A X B P Q X C 1 ˙ ¬ P ˙ X ¬ Q ˙ X u A u P ˙ Q meet K X u < K X u A
34 simpl32 K HL P A Q A X B P Q X C 1 ˙ ¬ P ˙ X ¬ Q ˙ X u A u P ˙ Q meet K X u < K X ¬ P ˙ X
35 simprrr K HL P A Q A X B P Q X C 1 ˙ ¬ P ˙ X ¬ Q ˙ X u A u P ˙ Q meet K X u < K X u < K X
36 simpl2l K HL P A Q A X B P Q X C 1 ˙ ¬ P ˙ X ¬ Q ˙ X u A u P ˙ Q meet K X u < K X X B
37 2 26 pltle K HL u A X B u < K X u ˙ X
38 31 33 36 37 syl3anc K HL P A Q A X B P Q X C 1 ˙ ¬ P ˙ X ¬ Q ˙ X u A u P ˙ Q meet K X u < K X u < K X u ˙ X
39 35 38 mpd K HL P A Q A X B P Q X C 1 ˙ ¬ P ˙ X ¬ Q ˙ X u A u P ˙ Q meet K X u < K X u ˙ X
40 breq1 P = u P ˙ X u ˙ X
41 39 40 syl5ibrcom K HL P A Q A X B P Q X C 1 ˙ ¬ P ˙ X ¬ Q ˙ X u A u P ˙ Q meet K X u < K X P = u P ˙ X
42 41 necon3bd K HL P A Q A X B P Q X C 1 ˙ ¬ P ˙ X ¬ Q ˙ X u A u P ˙ Q meet K X u < K X ¬ P ˙ X P u
43 34 42 mpd K HL P A Q A X B P Q X C 1 ˙ ¬ P ˙ X ¬ Q ˙ X u A u P ˙ Q meet K X u < K X P u
44 2 3 6 hlsupr K HL P A u A P u r A r P r u r ˙ P ˙ u
45 31 32 33 43 44 syl31anc K HL P A Q A X B P Q X C 1 ˙ ¬ P ˙ X ¬ Q ˙ X u A u P ˙ Q meet K X u < K X r A r P r u r ˙ P ˙ u
46 eqid P ˙ Q meet K X = P ˙ Q meet K X
47 1 2 3 4 5 6 26 14 46 cdlemblem K HL P A Q A X B P Q X C 1 ˙ ¬ P ˙ X ¬ Q ˙ X u A u P ˙ Q meet K X u < K X r A r P r u r ˙ P ˙ u ¬ r ˙ X ¬ r ˙ P ˙ Q
48 47 3exp K HL P A Q A X B P Q X C 1 ˙ ¬ P ˙ X ¬ Q ˙ X u A u P ˙ Q meet K X u < K X r A r P r u r ˙ P ˙ u ¬ r ˙ X ¬ r ˙ P ˙ Q
49 48 exp4a K HL P A Q A X B P Q X C 1 ˙ ¬ P ˙ X ¬ Q ˙ X u A u P ˙ Q meet K X u < K X r A r P r u r ˙ P ˙ u ¬ r ˙ X ¬ r ˙ P ˙ Q
50 49 imp K HL P A Q A X B P Q X C 1 ˙ ¬ P ˙ X ¬ Q ˙ X u A u P ˙ Q meet K X u < K X r A r P r u r ˙ P ˙ u ¬ r ˙ X ¬ r ˙ P ˙ Q
51 50 reximdvai K HL P A Q A X B P Q X C 1 ˙ ¬ P ˙ X ¬ Q ˙ X u A u P ˙ Q meet K X u < K X r A r P r u r ˙ P ˙ u r A ¬ r ˙ X ¬ r ˙ P ˙ Q
52 45 51 mpd K HL P A Q A X B P Q X C 1 ˙ ¬ P ˙ X ¬ Q ˙ X u A u P ˙ Q meet K X u < K X r A ¬ r ˙ X ¬ r ˙ P ˙ Q
53 30 52 rexlimddv K HL P A Q A X B P Q X C 1 ˙ ¬ P ˙ X ¬ Q ˙ X r A ¬ r ˙ X ¬ r ˙ P ˙ Q