Metamath Proof Explorer


Theorem cdlemb2

Description: Given two atoms not under the fiducial (reference) co-atom W , there is a third. Lemma B in Crawley p. 112. (Contributed by NM, 30-May-2012)

Ref Expression
Hypotheses cdlemb2.l ˙ = K
cdlemb2.j ˙ = join K
cdlemb2.a A = Atoms K
cdlemb2.h H = LHyp K
Assertion cdlemb2 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W P Q r A ¬ r ˙ W ¬ r ˙ P ˙ Q

Proof

Step Hyp Ref Expression
1 cdlemb2.l ˙ = K
2 cdlemb2.j ˙ = join K
3 cdlemb2.a A = Atoms K
4 cdlemb2.h H = LHyp K
5 simp1l K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W P Q K HL
6 simp2ll K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W P Q P A
7 simp2rl K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W P Q Q A
8 simp1r K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W P Q W H
9 eqid Base K = Base K
10 9 4 lhpbase W H W Base K
11 8 10 syl K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W P Q W Base K
12 simp3 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W P Q P Q
13 eqid 1. K = 1. K
14 eqid K = K
15 13 14 4 lhp1cvr K HL W H W K 1. K
16 15 3ad2ant1 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W P Q W K 1. K
17 simp2lr K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W P Q ¬ P ˙ W
18 simp2rr K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W P Q ¬ Q ˙ W
19 9 1 2 13 14 3 cdlemb K HL P A Q A W Base K P Q W K 1. K ¬ P ˙ W ¬ Q ˙ W r A ¬ r ˙ W ¬ r ˙ P ˙ Q
20 5 6 7 11 12 16 17 18 19 syl323anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W P Q r A ¬ r ˙ W ¬ r ˙ P ˙ Q