Metamath Proof Explorer


Theorem cdlemb3

Description: Given two atoms not under the fiducial co-atom W , there is a third. Lemma B in Crawley p. 112. TODO: Is there a simpler more direct proof, that could be placed earlier e.g. near lhpexle ? Then replace cdlemb2 with it. This is a more general version of cdlemb2 without P =/= Q condition. (Contributed by NM, 27-Apr-2013)

Ref Expression
Hypotheses cdlemg5.l ˙ = K
cdlemg5.j ˙ = join K
cdlemg5.a A = Atoms K
cdlemg5.h H = LHyp K
Assertion cdlemb3 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W r A ¬ r ˙ W ¬ r ˙ P ˙ Q

Proof

Step Hyp Ref Expression
1 cdlemg5.l ˙ = K
2 cdlemg5.j ˙ = join K
3 cdlemg5.a A = Atoms K
4 cdlemg5.h H = LHyp K
5 simpl1 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W P = Q K HL W H
6 simpl2 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W P = Q P A ¬ P ˙ W
7 1 2 3 4 cdlemg5 K HL W H P A ¬ P ˙ W r A P r ¬ r ˙ W
8 5 6 7 syl2anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W P = Q r A P r ¬ r ˙ W
9 ancom P r ¬ r ˙ W ¬ r ˙ W P r
10 eqcom P = r r = P
11 simp2 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W P = Q r A P = Q
12 11 oveq2d K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W P = Q r A P ˙ P = P ˙ Q
13 simp11l K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W P = Q r A K HL
14 simp12l K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W P = Q r A P A
15 2 3 hlatjidm K HL P A P ˙ P = P
16 13 14 15 syl2anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W P = Q r A P ˙ P = P
17 12 16 eqtr3d K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W P = Q r A P ˙ Q = P
18 17 breq2d K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W P = Q r A r ˙ P ˙ Q r ˙ P
19 hlatl K HL K AtLat
20 13 19 syl K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W P = Q r A K AtLat
21 simp3 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W P = Q r A r A
22 1 3 atcmp K AtLat r A P A r ˙ P r = P
23 20 21 14 22 syl3anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W P = Q r A r ˙ P r = P
24 18 23 bitr2d K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W P = Q r A r = P r ˙ P ˙ Q
25 10 24 syl5bb K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W P = Q r A P = r r ˙ P ˙ Q
26 25 necon3abid K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W P = Q r A P r ¬ r ˙ P ˙ Q
27 26 anbi2d K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W P = Q r A ¬ r ˙ W P r ¬ r ˙ W ¬ r ˙ P ˙ Q
28 9 27 syl5bb K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W P = Q r A P r ¬ r ˙ W ¬ r ˙ W ¬ r ˙ P ˙ Q
29 28 3expa K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W P = Q r A P r ¬ r ˙ W ¬ r ˙ W ¬ r ˙ P ˙ Q
30 29 rexbidva K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W P = Q r A P r ¬ r ˙ W r A ¬ r ˙ W ¬ r ˙ P ˙ Q
31 8 30 mpbid K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W P = Q r A ¬ r ˙ W ¬ r ˙ P ˙ Q
32 simpl1 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W P Q K HL W H
33 simpl2 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W P Q P A ¬ P ˙ W
34 simpl3 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W P Q Q A ¬ Q ˙ W
35 simpr K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W P Q P Q
36 1 2 3 4 cdlemb2 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W P Q r A ¬ r ˙ W ¬ r ˙ P ˙ Q
37 32 33 34 35 36 syl121anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W P Q r A ¬ r ˙ W ¬ r ˙ P ˙ Q
38 31 37 pm2.61dane K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W r A ¬ r ˙ W ¬ r ˙ P ˙ Q