Metamath Proof Explorer


Theorem cdlemc

Description: Lemma C in Crawley p. 113. (Contributed by NM, 26-May-2012)

Ref Expression
Hypotheses cdlemc3.l ˙ = K
cdlemc3.j ˙ = join K
cdlemc3.m ˙ = meet K
cdlemc3.a A = Atoms K
cdlemc3.h H = LHyp K
cdlemc3.t T = LTrn K W
cdlemc3.r R = trL K W
Assertion cdlemc K HL W H F T P A ¬ P ˙ W Q A ¬ Q ˙ W ¬ Q ˙ P ˙ F P F Q = Q ˙ R F ˙ F P ˙ P ˙ Q ˙ W

Proof

Step Hyp Ref Expression
1 cdlemc3.l ˙ = K
2 cdlemc3.j ˙ = join K
3 cdlemc3.m ˙ = meet K
4 cdlemc3.a A = Atoms K
5 cdlemc3.h H = LHyp K
6 cdlemc3.t T = LTrn K W
7 cdlemc3.r R = trL K W
8 simpl1 K HL W H F T P A ¬ P ˙ W Q A ¬ Q ˙ W ¬ Q ˙ P ˙ F P F P = P K HL W H
9 simpl2 K HL W H F T P A ¬ P ˙ W Q A ¬ Q ˙ W ¬ Q ˙ P ˙ F P F P = P F T P A ¬ P ˙ W Q A ¬ Q ˙ W
10 simpr K HL W H F T P A ¬ P ˙ W Q A ¬ Q ˙ W ¬ Q ˙ P ˙ F P F P = P F P = P
11 1 2 3 4 5 6 7 cdlemc6 K HL W H F T P A ¬ P ˙ W Q A ¬ Q ˙ W F P = P F Q = Q ˙ R F ˙ F P ˙ P ˙ Q ˙ W
12 8 9 10 11 syl3anc K HL W H F T P A ¬ P ˙ W Q A ¬ Q ˙ W ¬ Q ˙ P ˙ F P F P = P F Q = Q ˙ R F ˙ F P ˙ P ˙ Q ˙ W
13 simpl1 K HL W H F T P A ¬ P ˙ W Q A ¬ Q ˙ W ¬ Q ˙ P ˙ F P F P P K HL W H
14 simpl2 K HL W H F T P A ¬ P ˙ W Q A ¬ Q ˙ W ¬ Q ˙ P ˙ F P F P P F T P A ¬ P ˙ W Q A ¬ Q ˙ W
15 simpl3 K HL W H F T P A ¬ P ˙ W Q A ¬ Q ˙ W ¬ Q ˙ P ˙ F P F P P ¬ Q ˙ P ˙ F P
16 simpr K HL W H F T P A ¬ P ˙ W Q A ¬ Q ˙ W ¬ Q ˙ P ˙ F P F P P F P P
17 1 2 3 4 5 6 7 cdlemc5 K HL W H F T P A ¬ P ˙ W Q A ¬ Q ˙ W ¬ Q ˙ P ˙ F P F P P F Q = Q ˙ R F ˙ F P ˙ P ˙ Q ˙ W
18 13 14 15 16 17 syl112anc K HL W H F T P A ¬ P ˙ W Q A ¬ Q ˙ W ¬ Q ˙ P ˙ F P F P P F Q = Q ˙ R F ˙ F P ˙ P ˙ Q ˙ W
19 12 18 pm2.61dane K HL W H F T P A ¬ P ˙ W Q A ¬ Q ˙ W ¬ Q ˙ P ˙ F P F Q = Q ˙ R F ˙ F P ˙ P ˙ Q ˙ W