Step |
Hyp |
Ref |
Expression |
1 |
|
cdlemc1.b |
|
2 |
|
cdlemc1.l |
|
3 |
|
cdlemc1.j |
|
4 |
|
cdlemc1.m |
|
5 |
|
cdlemc1.a |
|
6 |
|
cdlemc1.h |
|
7 |
|
simp1l |
|
8 |
7
|
hllatd |
|
9 |
|
simp3l |
|
10 |
1 5
|
atbase |
|
11 |
9 10
|
syl |
|
12 |
|
simp2 |
|
13 |
1 3
|
latjcl |
|
14 |
8 11 12 13
|
syl3anc |
|
15 |
|
simp1r |
|
16 |
1 6
|
lhpbase |
|
17 |
15 16
|
syl |
|
18 |
1 4
|
latmcl |
|
19 |
8 14 17 18
|
syl3anc |
|
20 |
1 3
|
latjcom |
|
21 |
8 11 19 20
|
syl3anc |
|
22 |
1 2 3
|
latlej1 |
|
23 |
8 11 12 22
|
syl3anc |
|
24 |
1 2 3 4 5
|
atmod2i1 |
|
25 |
7 9 14 17 23 24
|
syl131anc |
|
26 |
|
eqid |
|
27 |
2 3 26 5 6
|
lhpjat1 |
|
28 |
27
|
3adant2 |
|
29 |
28
|
oveq2d |
|
30 |
|
hlol |
|
31 |
7 30
|
syl |
|
32 |
1 4 26
|
olm11 |
|
33 |
31 14 32
|
syl2anc |
|
34 |
29 33
|
eqtrd |
|
35 |
21 25 34
|
3eqtrd |
|