Metamath Proof Explorer


Theorem cdlemc1

Description: Part of proof of Lemma C in Crawley p. 112. TODO: shorten with atmod3i1 ? (Contributed by NM, 29-May-2012)

Ref Expression
Hypotheses cdlemc1.b B = Base K
cdlemc1.l ˙ = K
cdlemc1.j ˙ = join K
cdlemc1.m ˙ = meet K
cdlemc1.a A = Atoms K
cdlemc1.h H = LHyp K
Assertion cdlemc1 K HL W H X B P A ¬ P ˙ W P ˙ P ˙ X ˙ W = P ˙ X

Proof

Step Hyp Ref Expression
1 cdlemc1.b B = Base K
2 cdlemc1.l ˙ = K
3 cdlemc1.j ˙ = join K
4 cdlemc1.m ˙ = meet K
5 cdlemc1.a A = Atoms K
6 cdlemc1.h H = LHyp K
7 simp1l K HL W H X B P A ¬ P ˙ W K HL
8 7 hllatd K HL W H X B P A ¬ P ˙ W K Lat
9 simp3l K HL W H X B P A ¬ P ˙ W P A
10 1 5 atbase P A P B
11 9 10 syl K HL W H X B P A ¬ P ˙ W P B
12 simp2 K HL W H X B P A ¬ P ˙ W X B
13 1 3 latjcl K Lat P B X B P ˙ X B
14 8 11 12 13 syl3anc K HL W H X B P A ¬ P ˙ W P ˙ X B
15 simp1r K HL W H X B P A ¬ P ˙ W W H
16 1 6 lhpbase W H W B
17 15 16 syl K HL W H X B P A ¬ P ˙ W W B
18 1 4 latmcl K Lat P ˙ X B W B P ˙ X ˙ W B
19 8 14 17 18 syl3anc K HL W H X B P A ¬ P ˙ W P ˙ X ˙ W B
20 1 3 latjcom K Lat P B P ˙ X ˙ W B P ˙ P ˙ X ˙ W = P ˙ X ˙ W ˙ P
21 8 11 19 20 syl3anc K HL W H X B P A ¬ P ˙ W P ˙ P ˙ X ˙ W = P ˙ X ˙ W ˙ P
22 1 2 3 latlej1 K Lat P B X B P ˙ P ˙ X
23 8 11 12 22 syl3anc K HL W H X B P A ¬ P ˙ W P ˙ P ˙ X
24 1 2 3 4 5 atmod2i1 K HL P A P ˙ X B W B P ˙ P ˙ X P ˙ X ˙ W ˙ P = P ˙ X ˙ W ˙ P
25 7 9 14 17 23 24 syl131anc K HL W H X B P A ¬ P ˙ W P ˙ X ˙ W ˙ P = P ˙ X ˙ W ˙ P
26 eqid 1. K = 1. K
27 2 3 26 5 6 lhpjat1 K HL W H P A ¬ P ˙ W W ˙ P = 1. K
28 27 3adant2 K HL W H X B P A ¬ P ˙ W W ˙ P = 1. K
29 28 oveq2d K HL W H X B P A ¬ P ˙ W P ˙ X ˙ W ˙ P = P ˙ X ˙ 1. K
30 hlol K HL K OL
31 7 30 syl K HL W H X B P A ¬ P ˙ W K OL
32 1 4 26 olm11 K OL P ˙ X B P ˙ X ˙ 1. K = P ˙ X
33 31 14 32 syl2anc K HL W H X B P A ¬ P ˙ W P ˙ X ˙ 1. K = P ˙ X
34 29 33 eqtrd K HL W H X B P A ¬ P ˙ W P ˙ X ˙ W ˙ P = P ˙ X
35 21 25 34 3eqtrd K HL W H X B P A ¬ P ˙ W P ˙ P ˙ X ˙ W = P ˙ X