Metamath Proof Explorer


Theorem cdlemc4

Description: Part of proof of Lemma C in Crawley p. 113. (Contributed by NM, 26-May-2012)

Ref Expression
Hypotheses cdlemc3.l ˙ = K
cdlemc3.j ˙ = join K
cdlemc3.m ˙ = meet K
cdlemc3.a A = Atoms K
cdlemc3.h H = LHyp K
cdlemc3.t T = LTrn K W
cdlemc3.r R = trL K W
Assertion cdlemc4 K HL W H F T P A ¬ P ˙ W Q A ¬ Q ˙ W ¬ Q ˙ P ˙ F P Q ˙ R F F P ˙ P ˙ Q ˙ W

Proof

Step Hyp Ref Expression
1 cdlemc3.l ˙ = K
2 cdlemc3.j ˙ = join K
3 cdlemc3.m ˙ = meet K
4 cdlemc3.a A = Atoms K
5 cdlemc3.h H = LHyp K
6 cdlemc3.t T = LTrn K W
7 cdlemc3.r R = trL K W
8 simpll K HL W H F T P A ¬ P ˙ W Q A ¬ Q ˙ W K HL
9 8 hllatd K HL W H F T P A ¬ P ˙ W Q A ¬ Q ˙ W K Lat
10 simpl K HL W H F T P A ¬ P ˙ W Q A ¬ Q ˙ W K HL W H
11 simpr1 K HL W H F T P A ¬ P ˙ W Q A ¬ Q ˙ W F T
12 simpr2l K HL W H F T P A ¬ P ˙ W Q A ¬ Q ˙ W P A
13 eqid Base K = Base K
14 13 4 atbase P A P Base K
15 12 14 syl K HL W H F T P A ¬ P ˙ W Q A ¬ Q ˙ W P Base K
16 13 5 6 ltrncl K HL W H F T P Base K F P Base K
17 10 11 15 16 syl3anc K HL W H F T P A ¬ P ˙ W Q A ¬ Q ˙ W F P Base K
18 simpr3l K HL W H F T P A ¬ P ˙ W Q A ¬ Q ˙ W Q A
19 13 2 4 hlatjcl K HL P A Q A P ˙ Q Base K
20 8 12 18 19 syl3anc K HL W H F T P A ¬ P ˙ W Q A ¬ Q ˙ W P ˙ Q Base K
21 13 5 lhpbase W H W Base K
22 21 ad2antlr K HL W H F T P A ¬ P ˙ W Q A ¬ Q ˙ W W Base K
23 13 3 latmcl K Lat P ˙ Q Base K W Base K P ˙ Q ˙ W Base K
24 9 20 22 23 syl3anc K HL W H F T P A ¬ P ˙ W Q A ¬ Q ˙ W P ˙ Q ˙ W Base K
25 13 1 2 latlej1 K Lat F P Base K P ˙ Q ˙ W Base K F P ˙ F P ˙ P ˙ Q ˙ W
26 9 17 24 25 syl3anc K HL W H F T P A ¬ P ˙ W Q A ¬ Q ˙ W F P ˙ F P ˙ P ˙ Q ˙ W
27 breq2 Q ˙ R F = F P ˙ P ˙ Q ˙ W F P ˙ Q ˙ R F F P ˙ F P ˙ P ˙ Q ˙ W
28 26 27 syl5ibrcom K HL W H F T P A ¬ P ˙ W Q A ¬ Q ˙ W Q ˙ R F = F P ˙ P ˙ Q ˙ W F P ˙ Q ˙ R F
29 1 2 3 4 5 6 7 cdlemc3 K HL W H F T P A ¬ P ˙ W Q A ¬ Q ˙ W F P ˙ Q ˙ R F Q ˙ P ˙ F P
30 28 29 syld K HL W H F T P A ¬ P ˙ W Q A ¬ Q ˙ W Q ˙ R F = F P ˙ P ˙ Q ˙ W Q ˙ P ˙ F P
31 30 necon3bd K HL W H F T P A ¬ P ˙ W Q A ¬ Q ˙ W ¬ Q ˙ P ˙ F P Q ˙ R F F P ˙ P ˙ Q ˙ W
32 31 3impia K HL W H F T P A ¬ P ˙ W Q A ¬ Q ˙ W ¬ Q ˙ P ˙ F P Q ˙ R F F P ˙ P ˙ Q ˙ W