Metamath Proof Explorer


Theorem cdlemc6

Description: Lemma for cdlemc . (Contributed by NM, 26-May-2012)

Ref Expression
Hypotheses cdlemc3.l ˙ = K
cdlemc3.j ˙ = join K
cdlemc3.m ˙ = meet K
cdlemc3.a A = Atoms K
cdlemc3.h H = LHyp K
cdlemc3.t T = LTrn K W
cdlemc3.r R = trL K W
Assertion cdlemc6 K HL W H F T P A ¬ P ˙ W Q A ¬ Q ˙ W F P = P F Q = Q ˙ R F ˙ F P ˙ P ˙ Q ˙ W

Proof

Step Hyp Ref Expression
1 cdlemc3.l ˙ = K
2 cdlemc3.j ˙ = join K
3 cdlemc3.m ˙ = meet K
4 cdlemc3.a A = Atoms K
5 cdlemc3.h H = LHyp K
6 cdlemc3.t T = LTrn K W
7 cdlemc3.r R = trL K W
8 simp1l K HL W H F T P A ¬ P ˙ W Q A ¬ Q ˙ W F P = P K HL
9 simp22l K HL W H F T P A ¬ P ˙ W Q A ¬ Q ˙ W F P = P P A
10 simp23l K HL W H F T P A ¬ P ˙ W Q A ¬ Q ˙ W F P = P Q A
11 2 4 hlatjcom K HL P A Q A P ˙ Q = Q ˙ P
12 8 9 10 11 syl3anc K HL W H F T P A ¬ P ˙ W Q A ¬ Q ˙ W F P = P P ˙ Q = Q ˙ P
13 12 oveq2d K HL W H F T P A ¬ P ˙ W Q A ¬ Q ˙ W F P = P Q ˙ P ˙ Q = Q ˙ Q ˙ P
14 8 hllatd K HL W H F T P A ¬ P ˙ W Q A ¬ Q ˙ W F P = P K Lat
15 eqid Base K = Base K
16 15 4 atbase Q A Q Base K
17 10 16 syl K HL W H F T P A ¬ P ˙ W Q A ¬ Q ˙ W F P = P Q Base K
18 15 4 atbase P A P Base K
19 9 18 syl K HL W H F T P A ¬ P ˙ W Q A ¬ Q ˙ W F P = P P Base K
20 15 2 3 latabs2 K Lat Q Base K P Base K Q ˙ Q ˙ P = Q
21 14 17 19 20 syl3anc K HL W H F T P A ¬ P ˙ W Q A ¬ Q ˙ W F P = P Q ˙ Q ˙ P = Q
22 13 21 eqtrd K HL W H F T P A ¬ P ˙ W Q A ¬ Q ˙ W F P = P Q ˙ P ˙ Q = Q
23 simp1 K HL W H F T P A ¬ P ˙ W Q A ¬ Q ˙ W F P = P K HL W H
24 simp22 K HL W H F T P A ¬ P ˙ W Q A ¬ Q ˙ W F P = P P A ¬ P ˙ W
25 simp21 K HL W H F T P A ¬ P ˙ W Q A ¬ Q ˙ W F P = P F T
26 simp3 K HL W H F T P A ¬ P ˙ W Q A ¬ Q ˙ W F P = P F P = P
27 eqid 0. K = 0. K
28 1 27 4 5 6 7 trl0 K HL W H P A ¬ P ˙ W F T F P = P R F = 0. K
29 23 24 25 26 28 syl112anc K HL W H F T P A ¬ P ˙ W Q A ¬ Q ˙ W F P = P R F = 0. K
30 29 oveq2d K HL W H F T P A ¬ P ˙ W Q A ¬ Q ˙ W F P = P Q ˙ R F = Q ˙ 0. K
31 hlol K HL K OL
32 8 31 syl K HL W H F T P A ¬ P ˙ W Q A ¬ Q ˙ W F P = P K OL
33 15 2 27 olj01 K OL Q Base K Q ˙ 0. K = Q
34 32 17 33 syl2anc K HL W H F T P A ¬ P ˙ W Q A ¬ Q ˙ W F P = P Q ˙ 0. K = Q
35 30 34 eqtrd K HL W H F T P A ¬ P ˙ W Q A ¬ Q ˙ W F P = P Q ˙ R F = Q
36 26 oveq1d K HL W H F T P A ¬ P ˙ W Q A ¬ Q ˙ W F P = P F P ˙ P ˙ Q ˙ W = P ˙ P ˙ Q ˙ W
37 15 2 4 hlatjcl K HL P A Q A P ˙ Q Base K
38 8 9 10 37 syl3anc K HL W H F T P A ¬ P ˙ W Q A ¬ Q ˙ W F P = P P ˙ Q Base K
39 simp1r K HL W H F T P A ¬ P ˙ W Q A ¬ Q ˙ W F P = P W H
40 15 5 lhpbase W H W Base K
41 39 40 syl K HL W H F T P A ¬ P ˙ W Q A ¬ Q ˙ W F P = P W Base K
42 15 3 latmcl K Lat P ˙ Q Base K W Base K P ˙ Q ˙ W Base K
43 14 38 41 42 syl3anc K HL W H F T P A ¬ P ˙ W Q A ¬ Q ˙ W F P = P P ˙ Q ˙ W Base K
44 15 2 latjcom K Lat P Base K P ˙ Q ˙ W Base K P ˙ P ˙ Q ˙ W = P ˙ Q ˙ W ˙ P
45 14 19 43 44 syl3anc K HL W H F T P A ¬ P ˙ W Q A ¬ Q ˙ W F P = P P ˙ P ˙ Q ˙ W = P ˙ Q ˙ W ˙ P
46 1 2 4 hlatlej1 K HL P A Q A P ˙ P ˙ Q
47 8 9 10 46 syl3anc K HL W H F T P A ¬ P ˙ W Q A ¬ Q ˙ W F P = P P ˙ P ˙ Q
48 15 1 2 3 4 atmod2i1 K HL P A P ˙ Q Base K W Base K P ˙ P ˙ Q P ˙ Q ˙ W ˙ P = P ˙ Q ˙ W ˙ P
49 8 9 38 41 47 48 syl131anc K HL W H F T P A ¬ P ˙ W Q A ¬ Q ˙ W F P = P P ˙ Q ˙ W ˙ P = P ˙ Q ˙ W ˙ P
50 eqid 1. K = 1. K
51 1 2 50 4 5 lhpjat1 K HL W H P A ¬ P ˙ W W ˙ P = 1. K
52 8 39 24 51 syl21anc K HL W H F T P A ¬ P ˙ W Q A ¬ Q ˙ W F P = P W ˙ P = 1. K
53 52 oveq2d K HL W H F T P A ¬ P ˙ W Q A ¬ Q ˙ W F P = P P ˙ Q ˙ W ˙ P = P ˙ Q ˙ 1. K
54 15 3 50 olm11 K OL P ˙ Q Base K P ˙ Q ˙ 1. K = P ˙ Q
55 32 38 54 syl2anc K HL W H F T P A ¬ P ˙ W Q A ¬ Q ˙ W F P = P P ˙ Q ˙ 1. K = P ˙ Q
56 49 53 55 3eqtrd K HL W H F T P A ¬ P ˙ W Q A ¬ Q ˙ W F P = P P ˙ Q ˙ W ˙ P = P ˙ Q
57 36 45 56 3eqtrd K HL W H F T P A ¬ P ˙ W Q A ¬ Q ˙ W F P = P F P ˙ P ˙ Q ˙ W = P ˙ Q
58 35 57 oveq12d K HL W H F T P A ¬ P ˙ W Q A ¬ Q ˙ W F P = P Q ˙ R F ˙ F P ˙ P ˙ Q ˙ W = Q ˙ P ˙ Q
59 1 4 5 6 ltrnateq K HL W H F T P A ¬ P ˙ W Q A ¬ Q ˙ W F P = P F Q = Q
60 22 58 59 3eqtr4rd K HL W H F T P A ¬ P ˙ W Q A ¬ Q ˙ W F P = P F Q = Q ˙ R F ˙ F P ˙ P ˙ Q ˙ W