| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cdlemc3.l |
|
| 2 |
|
cdlemc3.j |
|
| 3 |
|
cdlemc3.m |
|
| 4 |
|
cdlemc3.a |
|
| 5 |
|
cdlemc3.h |
|
| 6 |
|
cdlemc3.t |
|
| 7 |
|
cdlemc3.r |
|
| 8 |
|
simp1l |
|
| 9 |
|
simp22l |
|
| 10 |
|
simp23l |
|
| 11 |
2 4
|
hlatjcom |
|
| 12 |
8 9 10 11
|
syl3anc |
|
| 13 |
12
|
oveq2d |
|
| 14 |
8
|
hllatd |
|
| 15 |
|
eqid |
|
| 16 |
15 4
|
atbase |
|
| 17 |
10 16
|
syl |
|
| 18 |
15 4
|
atbase |
|
| 19 |
9 18
|
syl |
|
| 20 |
15 2 3
|
latabs2 |
|
| 21 |
14 17 19 20
|
syl3anc |
|
| 22 |
13 21
|
eqtrd |
|
| 23 |
|
simp1 |
|
| 24 |
|
simp22 |
|
| 25 |
|
simp21 |
|
| 26 |
|
simp3 |
|
| 27 |
|
eqid |
|
| 28 |
1 27 4 5 6 7
|
trl0 |
|
| 29 |
23 24 25 26 28
|
syl112anc |
|
| 30 |
29
|
oveq2d |
|
| 31 |
|
hlol |
|
| 32 |
8 31
|
syl |
|
| 33 |
15 2 27
|
olj01 |
|
| 34 |
32 17 33
|
syl2anc |
|
| 35 |
30 34
|
eqtrd |
|
| 36 |
26
|
oveq1d |
|
| 37 |
15 2 4
|
hlatjcl |
|
| 38 |
8 9 10 37
|
syl3anc |
|
| 39 |
|
simp1r |
|
| 40 |
15 5
|
lhpbase |
|
| 41 |
39 40
|
syl |
|
| 42 |
15 3
|
latmcl |
|
| 43 |
14 38 41 42
|
syl3anc |
|
| 44 |
15 2
|
latjcom |
|
| 45 |
14 19 43 44
|
syl3anc |
|
| 46 |
1 2 4
|
hlatlej1 |
|
| 47 |
8 9 10 46
|
syl3anc |
|
| 48 |
15 1 2 3 4
|
atmod2i1 |
|
| 49 |
8 9 38 41 47 48
|
syl131anc |
|
| 50 |
|
eqid |
|
| 51 |
1 2 50 4 5
|
lhpjat1 |
|
| 52 |
8 39 24 51
|
syl21anc |
|
| 53 |
52
|
oveq2d |
|
| 54 |
15 3 50
|
olm11 |
|
| 55 |
32 38 54
|
syl2anc |
|
| 56 |
49 53 55
|
3eqtrd |
|
| 57 |
36 45 56
|
3eqtrd |
|
| 58 |
35 57
|
oveq12d |
|
| 59 |
1 4 5 6
|
ltrnateq |
|
| 60 |
22 58 59
|
3eqtr4rd |
|