Metamath Proof Explorer


Theorem cdlemd

Description: If two translations agree at any atom not under the fiducial co-atom W , then they are equal. Lemma D in Crawley p. 113. (Contributed by NM, 2-Jun-2012)

Ref Expression
Hypotheses cdlemd.l ˙ = K
cdlemd.a A = Atoms K
cdlemd.h H = LHyp K
cdlemd.t T = LTrn K W
Assertion cdlemd K HL W H F T G T P A ¬ P ˙ W F P = G P F = G

Proof

Step Hyp Ref Expression
1 cdlemd.l ˙ = K
2 cdlemd.a A = Atoms K
3 cdlemd.h H = LHyp K
4 cdlemd.t T = LTrn K W
5 simpl11 K HL W H F T G T P A ¬ P ˙ W F P = G P q A K HL W H
6 simpl12 K HL W H F T G T P A ¬ P ˙ W F P = G P q A F T
7 simpl13 K HL W H F T G T P A ¬ P ˙ W F P = G P q A G T
8 6 7 jca K HL W H F T G T P A ¬ P ˙ W F P = G P q A F T G T
9 simpr K HL W H F T G T P A ¬ P ˙ W F P = G P q A q A
10 simpl2 K HL W H F T G T P A ¬ P ˙ W F P = G P q A P A ¬ P ˙ W
11 simpl3 K HL W H F T G T P A ¬ P ˙ W F P = G P q A F P = G P
12 eqid join K = join K
13 1 12 2 3 4 cdlemd9 K HL W H F T G T q A P A ¬ P ˙ W F P = G P F q = G q
14 5 8 9 10 11 13 syl311anc K HL W H F T G T P A ¬ P ˙ W F P = G P q A F q = G q
15 14 ralrimiva K HL W H F T G T P A ¬ P ˙ W F P = G P q A F q = G q
16 2 3 4 ltrneq2 K HL W H F T G T q A F q = G q F = G
17 16 3ad2ant1 K HL W H F T G T P A ¬ P ˙ W F P = G P q A F q = G q F = G
18 15 17 mpbid K HL W H F T G T P A ¬ P ˙ W F P = G P F = G