Step |
Hyp |
Ref |
Expression |
1 |
|
cdlemd1.l |
|
2 |
|
cdlemd1.j |
|
3 |
|
cdlemd1.m |
|
4 |
|
cdlemd1.a |
|
5 |
|
cdlemd1.h |
|
6 |
|
simpll |
|
7 |
|
simpr1l |
|
8 |
|
simpr2l |
|
9 |
|
simpr31 |
|
10 |
|
simpr32 |
|
11 |
|
simpr33 |
|
12 |
1 2 3 4
|
2llnma2 |
|
13 |
6 7 8 9 10 11 12
|
syl132anc |
|
14 |
|
hllat |
|
15 |
14
|
ad2antrr |
|
16 |
|
eqid |
|
17 |
16 4
|
atbase |
|
18 |
9 17
|
syl |
|
19 |
16 4
|
atbase |
|
20 |
7 19
|
syl |
|
21 |
16 2
|
latjcom |
|
22 |
15 18 20 21
|
syl3anc |
|
23 |
|
simpl |
|
24 |
|
simpr1 |
|
25 |
16 1 2 3 4 5
|
cdlemc1 |
|
26 |
23 18 24 25
|
syl3anc |
|
27 |
22 26
|
eqtr4d |
|
28 |
16 4
|
atbase |
|
29 |
8 28
|
syl |
|
30 |
16 2
|
latjcom |
|
31 |
15 18 29 30
|
syl3anc |
|
32 |
|
simpr2 |
|
33 |
16 1 2 3 4 5
|
cdlemc1 |
|
34 |
23 18 32 33
|
syl3anc |
|
35 |
31 34
|
eqtr4d |
|
36 |
27 35
|
oveq12d |
|
37 |
13 36
|
eqtr3d |
|