Metamath Proof Explorer


Theorem cdlemd1

Description: Part of proof of Lemma D in Crawley p. 113. (Contributed by NM, 29-May-2012)

Ref Expression
Hypotheses cdlemd1.l ˙ = K
cdlemd1.j ˙ = join K
cdlemd1.m ˙ = meet K
cdlemd1.a A = Atoms K
cdlemd1.h H = LHyp K
Assertion cdlemd1 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W R A P Q ¬ R ˙ P ˙ Q R = P ˙ P ˙ R ˙ W ˙ Q ˙ Q ˙ R ˙ W

Proof

Step Hyp Ref Expression
1 cdlemd1.l ˙ = K
2 cdlemd1.j ˙ = join K
3 cdlemd1.m ˙ = meet K
4 cdlemd1.a A = Atoms K
5 cdlemd1.h H = LHyp K
6 simpll K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W R A P Q ¬ R ˙ P ˙ Q K HL
7 simpr1l K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W R A P Q ¬ R ˙ P ˙ Q P A
8 simpr2l K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W R A P Q ¬ R ˙ P ˙ Q Q A
9 simpr31 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W R A P Q ¬ R ˙ P ˙ Q R A
10 simpr32 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W R A P Q ¬ R ˙ P ˙ Q P Q
11 simpr33 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W R A P Q ¬ R ˙ P ˙ Q ¬ R ˙ P ˙ Q
12 1 2 3 4 2llnma2 K HL P A Q A R A P Q ¬ R ˙ P ˙ Q R ˙ P ˙ R ˙ Q = R
13 6 7 8 9 10 11 12 syl132anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W R A P Q ¬ R ˙ P ˙ Q R ˙ P ˙ R ˙ Q = R
14 hllat K HL K Lat
15 14 ad2antrr K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W R A P Q ¬ R ˙ P ˙ Q K Lat
16 eqid Base K = Base K
17 16 4 atbase R A R Base K
18 9 17 syl K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W R A P Q ¬ R ˙ P ˙ Q R Base K
19 16 4 atbase P A P Base K
20 7 19 syl K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W R A P Q ¬ R ˙ P ˙ Q P Base K
21 16 2 latjcom K Lat R Base K P Base K R ˙ P = P ˙ R
22 15 18 20 21 syl3anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W R A P Q ¬ R ˙ P ˙ Q R ˙ P = P ˙ R
23 simpl K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W R A P Q ¬ R ˙ P ˙ Q K HL W H
24 simpr1 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W R A P Q ¬ R ˙ P ˙ Q P A ¬ P ˙ W
25 16 1 2 3 4 5 cdlemc1 K HL W H R Base K P A ¬ P ˙ W P ˙ P ˙ R ˙ W = P ˙ R
26 23 18 24 25 syl3anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W R A P Q ¬ R ˙ P ˙ Q P ˙ P ˙ R ˙ W = P ˙ R
27 22 26 eqtr4d K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W R A P Q ¬ R ˙ P ˙ Q R ˙ P = P ˙ P ˙ R ˙ W
28 16 4 atbase Q A Q Base K
29 8 28 syl K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W R A P Q ¬ R ˙ P ˙ Q Q Base K
30 16 2 latjcom K Lat R Base K Q Base K R ˙ Q = Q ˙ R
31 15 18 29 30 syl3anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W R A P Q ¬ R ˙ P ˙ Q R ˙ Q = Q ˙ R
32 simpr2 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W R A P Q ¬ R ˙ P ˙ Q Q A ¬ Q ˙ W
33 16 1 2 3 4 5 cdlemc1 K HL W H R Base K Q A ¬ Q ˙ W Q ˙ Q ˙ R ˙ W = Q ˙ R
34 23 18 32 33 syl3anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W R A P Q ¬ R ˙ P ˙ Q Q ˙ Q ˙ R ˙ W = Q ˙ R
35 31 34 eqtr4d K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W R A P Q ¬ R ˙ P ˙ Q R ˙ Q = Q ˙ Q ˙ R ˙ W
36 27 35 oveq12d K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W R A P Q ¬ R ˙ P ˙ Q R ˙ P ˙ R ˙ Q = P ˙ P ˙ R ˙ W ˙ Q ˙ Q ˙ R ˙ W
37 13 36 eqtr3d K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W R A P Q ¬ R ˙ P ˙ Q R = P ˙ P ˙ R ˙ W ˙ Q ˙ Q ˙ R ˙ W