Metamath Proof Explorer


Theorem cdlemd3

Description: Part of proof of Lemma D in Crawley p. 113. The R =/= P requirement is not mentioned in their proof. (Contributed by NM, 29-May-2012)

Ref Expression
Hypotheses cdlemd3.l ˙ = K
cdlemd3.j ˙ = join K
cdlemd3.a A = Atoms K
cdlemd3.h H = LHyp K
Assertion cdlemd3 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W P Q R ˙ P ˙ Q R P R A S A ¬ S ˙ P ˙ Q ¬ R ˙ P ˙ S

Proof

Step Hyp Ref Expression
1 cdlemd3.l ˙ = K
2 cdlemd3.j ˙ = join K
3 cdlemd3.a A = Atoms K
4 cdlemd3.h H = LHyp K
5 simp33 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W P Q R ˙ P ˙ Q R P R A S A ¬ S ˙ P ˙ Q ¬ S ˙ P ˙ Q
6 simp1l K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W P Q R ˙ P ˙ Q R P R A S A ¬ S ˙ P ˙ Q K HL
7 simp31 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W P Q R ˙ P ˙ Q R P R A S A ¬ S ˙ P ˙ Q R A
8 simp32 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W P Q R ˙ P ˙ Q R P R A S A ¬ S ˙ P ˙ Q S A
9 simp21l K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W P Q R ˙ P ˙ Q R P R A S A ¬ S ˙ P ˙ Q P A
10 simp233 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W P Q R ˙ P ˙ Q R P R A S A ¬ S ˙ P ˙ Q R P
11 1 2 3 hlatexch1 K HL R A S A P A R P R ˙ P ˙ S S ˙ P ˙ R
12 6 7 8 9 10 11 syl131anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W P Q R ˙ P ˙ Q R P R A S A ¬ S ˙ P ˙ Q R ˙ P ˙ S S ˙ P ˙ R
13 simp22l K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W P Q R ˙ P ˙ Q R P R A S A ¬ S ˙ P ˙ Q Q A
14 1 2 3 hlatlej1 K HL P A Q A P ˙ P ˙ Q
15 6 9 13 14 syl3anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W P Q R ˙ P ˙ Q R P R A S A ¬ S ˙ P ˙ Q P ˙ P ˙ Q
16 simp232 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W P Q R ˙ P ˙ Q R P R A S A ¬ S ˙ P ˙ Q R ˙ P ˙ Q
17 6 hllatd K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W P Q R ˙ P ˙ Q R P R A S A ¬ S ˙ P ˙ Q K Lat
18 eqid Base K = Base K
19 18 3 atbase P A P Base K
20 9 19 syl K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W P Q R ˙ P ˙ Q R P R A S A ¬ S ˙ P ˙ Q P Base K
21 18 3 atbase R A R Base K
22 7 21 syl K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W P Q R ˙ P ˙ Q R P R A S A ¬ S ˙ P ˙ Q R Base K
23 18 3 atbase Q A Q Base K
24 13 23 syl K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W P Q R ˙ P ˙ Q R P R A S A ¬ S ˙ P ˙ Q Q Base K
25 18 2 latjcl K Lat P Base K Q Base K P ˙ Q Base K
26 17 20 24 25 syl3anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W P Q R ˙ P ˙ Q R P R A S A ¬ S ˙ P ˙ Q P ˙ Q Base K
27 18 1 2 latjle12 K Lat P Base K R Base K P ˙ Q Base K P ˙ P ˙ Q R ˙ P ˙ Q P ˙ R ˙ P ˙ Q
28 17 20 22 26 27 syl13anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W P Q R ˙ P ˙ Q R P R A S A ¬ S ˙ P ˙ Q P ˙ P ˙ Q R ˙ P ˙ Q P ˙ R ˙ P ˙ Q
29 15 16 28 mpbi2and K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W P Q R ˙ P ˙ Q R P R A S A ¬ S ˙ P ˙ Q P ˙ R ˙ P ˙ Q
30 18 3 atbase S A S Base K
31 8 30 syl K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W P Q R ˙ P ˙ Q R P R A S A ¬ S ˙ P ˙ Q S Base K
32 18 2 latjcl K Lat P Base K R Base K P ˙ R Base K
33 17 20 22 32 syl3anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W P Q R ˙ P ˙ Q R P R A S A ¬ S ˙ P ˙ Q P ˙ R Base K
34 18 1 lattr K Lat S Base K P ˙ R Base K P ˙ Q Base K S ˙ P ˙ R P ˙ R ˙ P ˙ Q S ˙ P ˙ Q
35 17 31 33 26 34 syl13anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W P Q R ˙ P ˙ Q R P R A S A ¬ S ˙ P ˙ Q S ˙ P ˙ R P ˙ R ˙ P ˙ Q S ˙ P ˙ Q
36 29 35 mpan2d K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W P Q R ˙ P ˙ Q R P R A S A ¬ S ˙ P ˙ Q S ˙ P ˙ R S ˙ P ˙ Q
37 12 36 syld K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W P Q R ˙ P ˙ Q R P R A S A ¬ S ˙ P ˙ Q R ˙ P ˙ S S ˙ P ˙ Q
38 5 37 mtod K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W P Q R ˙ P ˙ Q R P R A S A ¬ S ˙ P ˙ Q ¬ R ˙ P ˙ S