Metamath Proof Explorer


Theorem cdlemd5

Description: Part of proof of Lemma D in Crawley p. 113. (Contributed by NM, 30-May-2012)

Ref Expression
Hypotheses cdlemd4.l ˙ = K
cdlemd4.j ˙ = join K
cdlemd4.a A = Atoms K
cdlemd4.h H = LHyp K
cdlemd4.t T = LTrn K W
Assertion cdlemd5 K HL W H F T G T R A P A ¬ P ˙ W Q A ¬ Q ˙ W P Q F P = G P F Q = G Q F R = G R

Proof

Step Hyp Ref Expression
1 cdlemd4.l ˙ = K
2 cdlemd4.j ˙ = join K
3 cdlemd4.a A = Atoms K
4 cdlemd4.h H = LHyp K
5 cdlemd4.t T = LTrn K W
6 fveq2 R = P F R = F P
7 fveq2 R = P G R = G P
8 6 7 eqeq12d R = P F R = G R F P = G P
9 simpll1 K HL W H F T G T R A P A ¬ P ˙ W Q A ¬ Q ˙ W P Q F P = G P F Q = G Q R ˙ P ˙ Q R P K HL W H F T G T R A
10 simpl21 K HL W H F T G T R A P A ¬ P ˙ W Q A ¬ Q ˙ W P Q F P = G P F Q = G Q R ˙ P ˙ Q P A ¬ P ˙ W
11 10 adantr K HL W H F T G T R A P A ¬ P ˙ W Q A ¬ Q ˙ W P Q F P = G P F Q = G Q R ˙ P ˙ Q R P P A ¬ P ˙ W
12 simpl22 K HL W H F T G T R A P A ¬ P ˙ W Q A ¬ Q ˙ W P Q F P = G P F Q = G Q R ˙ P ˙ Q Q A ¬ Q ˙ W
13 12 adantr K HL W H F T G T R A P A ¬ P ˙ W Q A ¬ Q ˙ W P Q F P = G P F Q = G Q R ˙ P ˙ Q R P Q A ¬ Q ˙ W
14 simp23 K HL W H F T G T R A P A ¬ P ˙ W Q A ¬ Q ˙ W P Q F P = G P F Q = G Q P Q
15 14 ad2antrr K HL W H F T G T R A P A ¬ P ˙ W Q A ¬ Q ˙ W P Q F P = G P F Q = G Q R ˙ P ˙ Q R P P Q
16 simplr K HL W H F T G T R A P A ¬ P ˙ W Q A ¬ Q ˙ W P Q F P = G P F Q = G Q R ˙ P ˙ Q R P R ˙ P ˙ Q
17 simpr K HL W H F T G T R A P A ¬ P ˙ W Q A ¬ Q ˙ W P Q F P = G P F Q = G Q R ˙ P ˙ Q R P R P
18 15 16 17 3jca K HL W H F T G T R A P A ¬ P ˙ W Q A ¬ Q ˙ W P Q F P = G P F Q = G Q R ˙ P ˙ Q R P P Q R ˙ P ˙ Q R P
19 simpll3 K HL W H F T G T R A P A ¬ P ˙ W Q A ¬ Q ˙ W P Q F P = G P F Q = G Q R ˙ P ˙ Q R P F P = G P F Q = G Q
20 1 2 3 4 5 cdlemd4 K HL W H F T G T R A P A ¬ P ˙ W Q A ¬ Q ˙ W P Q R ˙ P ˙ Q R P F P = G P F Q = G Q F R = G R
21 9 11 13 18 19 20 syl131anc K HL W H F T G T R A P A ¬ P ˙ W Q A ¬ Q ˙ W P Q F P = G P F Q = G Q R ˙ P ˙ Q R P F R = G R
22 simpl3l K HL W H F T G T R A P A ¬ P ˙ W Q A ¬ Q ˙ W P Q F P = G P F Q = G Q R ˙ P ˙ Q F P = G P
23 8 21 22 pm2.61ne K HL W H F T G T R A P A ¬ P ˙ W Q A ¬ Q ˙ W P Q F P = G P F Q = G Q R ˙ P ˙ Q F R = G R
24 simpl1 K HL W H F T G T R A P A ¬ P ˙ W Q A ¬ Q ˙ W P Q F P = G P F Q = G Q ¬ R ˙ P ˙ Q K HL W H F T G T R A
25 simpl21 K HL W H F T G T R A P A ¬ P ˙ W Q A ¬ Q ˙ W P Q F P = G P F Q = G Q ¬ R ˙ P ˙ Q P A ¬ P ˙ W
26 simpl22 K HL W H F T G T R A P A ¬ P ˙ W Q A ¬ Q ˙ W P Q F P = G P F Q = G Q ¬ R ˙ P ˙ Q Q A ¬ Q ˙ W
27 simpl23 K HL W H F T G T R A P A ¬ P ˙ W Q A ¬ Q ˙ W P Q F P = G P F Q = G Q ¬ R ˙ P ˙ Q P Q
28 simpr K HL W H F T G T R A P A ¬ P ˙ W Q A ¬ Q ˙ W P Q F P = G P F Q = G Q ¬ R ˙ P ˙ Q ¬ R ˙ P ˙ Q
29 27 28 jca K HL W H F T G T R A P A ¬ P ˙ W Q A ¬ Q ˙ W P Q F P = G P F Q = G Q ¬ R ˙ P ˙ Q P Q ¬ R ˙ P ˙ Q
30 simpl3 K HL W H F T G T R A P A ¬ P ˙ W Q A ¬ Q ˙ W P Q F P = G P F Q = G Q ¬ R ˙ P ˙ Q F P = G P F Q = G Q
31 1 2 3 4 5 cdlemd2 K HL W H F T G T R A P A ¬ P ˙ W Q A ¬ Q ˙ W P Q ¬ R ˙ P ˙ Q F P = G P F Q = G Q F R = G R
32 24 25 26 29 30 31 syl131anc K HL W H F T G T R A P A ¬ P ˙ W Q A ¬ Q ˙ W P Q F P = G P F Q = G Q ¬ R ˙ P ˙ Q F R = G R
33 23 32 pm2.61dan K HL W H F T G T R A P A ¬ P ˙ W Q A ¬ Q ˙ W P Q F P = G P F Q = G Q F R = G R