Metamath Proof Explorer


Theorem cdlemd6

Description: Part of proof of Lemma D in Crawley p. 113. (Contributed by NM, 31-May-2012)

Ref Expression
Hypotheses cdlemd4.l ˙ = K
cdlemd4.j ˙ = join K
cdlemd4.a A = Atoms K
cdlemd4.h H = LHyp K
cdlemd4.t T = LTrn K W
Assertion cdlemd6 K HL W H F T G T P A ¬ P ˙ W Q A ¬ Q ˙ W ¬ Q ˙ P ˙ F P F P = G P F Q = G Q

Proof

Step Hyp Ref Expression
1 cdlemd4.l ˙ = K
2 cdlemd4.j ˙ = join K
3 cdlemd4.a A = Atoms K
4 cdlemd4.h H = LHyp K
5 cdlemd4.t T = LTrn K W
6 simp3 K HL W H F T G T P A ¬ P ˙ W Q A ¬ Q ˙ W ¬ Q ˙ P ˙ F P F P = G P F P = G P
7 6 oveq2d K HL W H F T G T P A ¬ P ˙ W Q A ¬ Q ˙ W ¬ Q ˙ P ˙ F P F P = G P P ˙ F P = P ˙ G P
8 7 oveq1d K HL W H F T G T P A ¬ P ˙ W Q A ¬ Q ˙ W ¬ Q ˙ P ˙ F P F P = G P P ˙ F P meet K W = P ˙ G P meet K W
9 simp1l K HL W H F T G T P A ¬ P ˙ W Q A ¬ Q ˙ W ¬ Q ˙ P ˙ F P F P = G P K HL W H
10 simp1rl K HL W H F T G T P A ¬ P ˙ W Q A ¬ Q ˙ W ¬ Q ˙ P ˙ F P F P = G P F T
11 simp21 K HL W H F T G T P A ¬ P ˙ W Q A ¬ Q ˙ W ¬ Q ˙ P ˙ F P F P = G P P A ¬ P ˙ W
12 eqid meet K = meet K
13 eqid trL K W = trL K W
14 1 2 12 3 4 5 13 trlval2 K HL W H F T P A ¬ P ˙ W trL K W F = P ˙ F P meet K W
15 9 10 11 14 syl3anc K HL W H F T G T P A ¬ P ˙ W Q A ¬ Q ˙ W ¬ Q ˙ P ˙ F P F P = G P trL K W F = P ˙ F P meet K W
16 simp1rr K HL W H F T G T P A ¬ P ˙ W Q A ¬ Q ˙ W ¬ Q ˙ P ˙ F P F P = G P G T
17 1 2 12 3 4 5 13 trlval2 K HL W H G T P A ¬ P ˙ W trL K W G = P ˙ G P meet K W
18 9 16 11 17 syl3anc K HL W H F T G T P A ¬ P ˙ W Q A ¬ Q ˙ W ¬ Q ˙ P ˙ F P F P = G P trL K W G = P ˙ G P meet K W
19 8 15 18 3eqtr4d K HL W H F T G T P A ¬ P ˙ W Q A ¬ Q ˙ W ¬ Q ˙ P ˙ F P F P = G P trL K W F = trL K W G
20 19 oveq2d K HL W H F T G T P A ¬ P ˙ W Q A ¬ Q ˙ W ¬ Q ˙ P ˙ F P F P = G P Q ˙ trL K W F = Q ˙ trL K W G
21 6 oveq1d K HL W H F T G T P A ¬ P ˙ W Q A ¬ Q ˙ W ¬ Q ˙ P ˙ F P F P = G P F P ˙ P ˙ Q meet K W = G P ˙ P ˙ Q meet K W
22 20 21 oveq12d K HL W H F T G T P A ¬ P ˙ W Q A ¬ Q ˙ W ¬ Q ˙ P ˙ F P F P = G P Q ˙ trL K W F meet K F P ˙ P ˙ Q meet K W = Q ˙ trL K W G meet K G P ˙ P ˙ Q meet K W
23 simp22 K HL W H F T G T P A ¬ P ˙ W Q A ¬ Q ˙ W ¬ Q ˙ P ˙ F P F P = G P Q A ¬ Q ˙ W
24 simp23 K HL W H F T G T P A ¬ P ˙ W Q A ¬ Q ˙ W ¬ Q ˙ P ˙ F P F P = G P ¬ Q ˙ P ˙ F P
25 1 2 12 3 4 5 13 cdlemc K HL W H F T P A ¬ P ˙ W Q A ¬ Q ˙ W ¬ Q ˙ P ˙ F P F Q = Q ˙ trL K W F meet K F P ˙ P ˙ Q meet K W
26 9 10 11 23 24 25 syl131anc K HL W H F T G T P A ¬ P ˙ W Q A ¬ Q ˙ W ¬ Q ˙ P ˙ F P F P = G P F Q = Q ˙ trL K W F meet K F P ˙ P ˙ Q meet K W
27 oveq2 F P = G P P ˙ F P = P ˙ G P
28 27 breq2d F P = G P Q ˙ P ˙ F P Q ˙ P ˙ G P
29 28 notbid F P = G P ¬ Q ˙ P ˙ F P ¬ Q ˙ P ˙ G P
30 29 biimpd F P = G P ¬ Q ˙ P ˙ F P ¬ Q ˙ P ˙ G P
31 6 24 30 sylc K HL W H F T G T P A ¬ P ˙ W Q A ¬ Q ˙ W ¬ Q ˙ P ˙ F P F P = G P ¬ Q ˙ P ˙ G P
32 1 2 12 3 4 5 13 cdlemc K HL W H G T P A ¬ P ˙ W Q A ¬ Q ˙ W ¬ Q ˙ P ˙ G P G Q = Q ˙ trL K W G meet K G P ˙ P ˙ Q meet K W
33 9 16 11 23 31 32 syl131anc K HL W H F T G T P A ¬ P ˙ W Q A ¬ Q ˙ W ¬ Q ˙ P ˙ F P F P = G P G Q = Q ˙ trL K W G meet K G P ˙ P ˙ Q meet K W
34 22 26 33 3eqtr4d K HL W H F T G T P A ¬ P ˙ W Q A ¬ Q ˙ W ¬ Q ˙ P ˙ F P F P = G P F Q = G Q