Metamath Proof Explorer


Theorem cdlemd7

Description: Part of proof of Lemma D in Crawley p. 113. (Contributed by NM, 1-Jun-2012)

Ref Expression
Hypotheses cdlemd4.l ˙ = K
cdlemd4.j ˙ = join K
cdlemd4.a A = Atoms K
cdlemd4.h H = LHyp K
cdlemd4.t T = LTrn K W
Assertion cdlemd7 K HL W H F T G T R A P A ¬ P ˙ W Q A ¬ Q ˙ W F P = G P ¬ Q ˙ P ˙ F P F R = G R

Proof

Step Hyp Ref Expression
1 cdlemd4.l ˙ = K
2 cdlemd4.j ˙ = join K
3 cdlemd4.a A = Atoms K
4 cdlemd4.h H = LHyp K
5 cdlemd4.t T = LTrn K W
6 simp1 K HL W H F T G T R A P A ¬ P ˙ W Q A ¬ Q ˙ W F P = G P ¬ Q ˙ P ˙ F P K HL W H F T G T R A
7 simp2l K HL W H F T G T R A P A ¬ P ˙ W Q A ¬ Q ˙ W F P = G P ¬ Q ˙ P ˙ F P P A ¬ P ˙ W
8 simp2r K HL W H F T G T R A P A ¬ P ˙ W Q A ¬ Q ˙ W F P = G P ¬ Q ˙ P ˙ F P Q A ¬ Q ˙ W
9 simp11l K HL W H F T G T R A P A ¬ P ˙ W Q A ¬ Q ˙ W F P = G P ¬ Q ˙ P ˙ F P K HL
10 9 hllatd K HL W H F T G T R A P A ¬ P ˙ W Q A ¬ Q ˙ W F P = G P ¬ Q ˙ P ˙ F P K Lat
11 simp2rl K HL W H F T G T R A P A ¬ P ˙ W Q A ¬ Q ˙ W F P = G P ¬ Q ˙ P ˙ F P Q A
12 eqid Base K = Base K
13 12 3 atbase Q A Q Base K
14 11 13 syl K HL W H F T G T R A P A ¬ P ˙ W Q A ¬ Q ˙ W F P = G P ¬ Q ˙ P ˙ F P Q Base K
15 simp2ll K HL W H F T G T R A P A ¬ P ˙ W Q A ¬ Q ˙ W F P = G P ¬ Q ˙ P ˙ F P P A
16 12 3 atbase P A P Base K
17 15 16 syl K HL W H F T G T R A P A ¬ P ˙ W Q A ¬ Q ˙ W F P = G P ¬ Q ˙ P ˙ F P P Base K
18 simp11 K HL W H F T G T R A P A ¬ P ˙ W Q A ¬ Q ˙ W F P = G P ¬ Q ˙ P ˙ F P K HL W H
19 simp12l K HL W H F T G T R A P A ¬ P ˙ W Q A ¬ Q ˙ W F P = G P ¬ Q ˙ P ˙ F P F T
20 12 4 5 ltrncl K HL W H F T P Base K F P Base K
21 18 19 17 20 syl3anc K HL W H F T G T R A P A ¬ P ˙ W Q A ¬ Q ˙ W F P = G P ¬ Q ˙ P ˙ F P F P Base K
22 simp3r K HL W H F T G T R A P A ¬ P ˙ W Q A ¬ Q ˙ W F P = G P ¬ Q ˙ P ˙ F P ¬ Q ˙ P ˙ F P
23 12 1 2 latnlej1l K Lat Q Base K P Base K F P Base K ¬ Q ˙ P ˙ F P Q P
24 23 necomd K Lat Q Base K P Base K F P Base K ¬ Q ˙ P ˙ F P P Q
25 10 14 17 21 22 24 syl131anc K HL W H F T G T R A P A ¬ P ˙ W Q A ¬ Q ˙ W F P = G P ¬ Q ˙ P ˙ F P P Q
26 simp3l K HL W H F T G T R A P A ¬ P ˙ W Q A ¬ Q ˙ W F P = G P ¬ Q ˙ P ˙ F P F P = G P
27 simp12 K HL W H F T G T R A P A ¬ P ˙ W Q A ¬ Q ˙ W F P = G P ¬ Q ˙ P ˙ F P F T G T
28 1 2 3 4 5 cdlemd6 K HL W H F T G T P A ¬ P ˙ W Q A ¬ Q ˙ W ¬ Q ˙ P ˙ F P F P = G P F Q = G Q
29 18 27 7 8 22 26 28 syl231anc K HL W H F T G T R A P A ¬ P ˙ W Q A ¬ Q ˙ W F P = G P ¬ Q ˙ P ˙ F P F Q = G Q
30 1 2 3 4 5 cdlemd5 K HL W H F T G T R A P A ¬ P ˙ W Q A ¬ Q ˙ W P Q F P = G P F Q = G Q F R = G R
31 6 7 8 25 26 29 30 syl132anc K HL W H F T G T R A P A ¬ P ˙ W Q A ¬ Q ˙ W F P = G P ¬ Q ˙ P ˙ F P F R = G R