Metamath Proof Explorer


Theorem cdlemd8

Description: Part of proof of Lemma D in Crawley p. 113. (Contributed by NM, 1-Jun-2012)

Ref Expression
Hypotheses cdlemd4.l ˙ = K
cdlemd4.j ˙ = join K
cdlemd4.a A = Atoms K
cdlemd4.h H = LHyp K
cdlemd4.t T = LTrn K W
Assertion cdlemd8 K HL W H F T G T R A P A ¬ P ˙ W F P = G P F P = P F R = G R

Proof

Step Hyp Ref Expression
1 cdlemd4.l ˙ = K
2 cdlemd4.j ˙ = join K
3 cdlemd4.a A = Atoms K
4 cdlemd4.h H = LHyp K
5 cdlemd4.t T = LTrn K W
6 simp3r K HL W H F T G T R A P A ¬ P ˙ W F P = G P F P = P F P = P
7 simp11 K HL W H F T G T R A P A ¬ P ˙ W F P = G P F P = P K HL W H
8 simp12l K HL W H F T G T R A P A ¬ P ˙ W F P = G P F P = P F T
9 simp2 K HL W H F T G T R A P A ¬ P ˙ W F P = G P F P = P P A ¬ P ˙ W
10 eqid Base K = Base K
11 10 1 3 4 5 ltrnideq K HL W H F T P A ¬ P ˙ W F = I Base K F P = P
12 7 8 9 11 syl3anc K HL W H F T G T R A P A ¬ P ˙ W F P = G P F P = P F = I Base K F P = P
13 6 12 mpbird K HL W H F T G T R A P A ¬ P ˙ W F P = G P F P = P F = I Base K
14 13 fveq1d K HL W H F T G T R A P A ¬ P ˙ W F P = G P F P = P F R = I Base K R
15 simp3l K HL W H F T G T R A P A ¬ P ˙ W F P = G P F P = P F P = G P
16 15 6 eqtr3d K HL W H F T G T R A P A ¬ P ˙ W F P = G P F P = P G P = P
17 simp12r K HL W H F T G T R A P A ¬ P ˙ W F P = G P F P = P G T
18 10 1 3 4 5 ltrnideq K HL W H G T P A ¬ P ˙ W G = I Base K G P = P
19 7 17 9 18 syl3anc K HL W H F T G T R A P A ¬ P ˙ W F P = G P F P = P G = I Base K G P = P
20 16 19 mpbird K HL W H F T G T R A P A ¬ P ˙ W F P = G P F P = P G = I Base K
21 20 fveq1d K HL W H F T G T R A P A ¬ P ˙ W F P = G P F P = P G R = I Base K R
22 14 21 eqtr4d K HL W H F T G T R A P A ¬ P ˙ W F P = G P F P = P F R = G R