Metamath Proof Explorer


Theorem cdlemd9

Description: Part of proof of Lemma D in Crawley p. 113. (Contributed by NM, 2-Jun-2012)

Ref Expression
Hypotheses cdlemd4.l ˙ = K
cdlemd4.j ˙ = join K
cdlemd4.a A = Atoms K
cdlemd4.h H = LHyp K
cdlemd4.t T = LTrn K W
Assertion cdlemd9 K HL W H F T G T R A P A ¬ P ˙ W F P = G P F R = G R

Proof

Step Hyp Ref Expression
1 cdlemd4.l ˙ = K
2 cdlemd4.j ˙ = join K
3 cdlemd4.a A = Atoms K
4 cdlemd4.h H = LHyp K
5 cdlemd4.t T = LTrn K W
6 simpl1 K HL W H F T G T R A P A ¬ P ˙ W F P = G P F P = P K HL W H F T G T R A
7 simpl2 K HL W H F T G T R A P A ¬ P ˙ W F P = G P F P = P P A ¬ P ˙ W
8 simpl3 K HL W H F T G T R A P A ¬ P ˙ W F P = G P F P = P F P = G P
9 simpr K HL W H F T G T R A P A ¬ P ˙ W F P = G P F P = P F P = P
10 1 2 3 4 5 cdlemd8 K HL W H F T G T R A P A ¬ P ˙ W F P = G P F P = P F R = G R
11 6 7 8 9 10 syl112anc K HL W H F T G T R A P A ¬ P ˙ W F P = G P F P = P F R = G R
12 simpl11 K HL W H F T G T R A P A ¬ P ˙ W F P = G P F P P K HL W H
13 simpl2 K HL W H F T G T R A P A ¬ P ˙ W F P = G P F P P P A ¬ P ˙ W
14 simp12l K HL W H F T G T R A P A ¬ P ˙ W F P = G P F T
15 14 adantr K HL W H F T G T R A P A ¬ P ˙ W F P = G P F P P F T
16 1 3 4 5 ltrnel K HL W H F T P A ¬ P ˙ W F P A ¬ F P ˙ W
17 12 15 13 16 syl3anc K HL W H F T G T R A P A ¬ P ˙ W F P = G P F P P F P A ¬ F P ˙ W
18 simpr K HL W H F T G T R A P A ¬ P ˙ W F P = G P F P P F P P
19 18 necomd K HL W H F T G T R A P A ¬ P ˙ W F P = G P F P P P F P
20 1 2 3 4 cdlemb2 K HL W H P A ¬ P ˙ W F P A ¬ F P ˙ W P F P s A ¬ s ˙ W ¬ s ˙ P ˙ F P
21 12 13 17 19 20 syl121anc K HL W H F T G T R A P A ¬ P ˙ W F P = G P F P P s A ¬ s ˙ W ¬ s ˙ P ˙ F P
22 simp1l1 K HL W H F T G T R A P A ¬ P ˙ W F P = G P F P P s A ¬ s ˙ W ¬ s ˙ P ˙ F P K HL W H F T G T R A
23 simp1l2 K HL W H F T G T R A P A ¬ P ˙ W F P = G P F P P s A ¬ s ˙ W ¬ s ˙ P ˙ F P P A ¬ P ˙ W
24 simp2 K HL W H F T G T R A P A ¬ P ˙ W F P = G P F P P s A ¬ s ˙ W ¬ s ˙ P ˙ F P s A
25 simp3l K HL W H F T G T R A P A ¬ P ˙ W F P = G P F P P s A ¬ s ˙ W ¬ s ˙ P ˙ F P ¬ s ˙ W
26 24 25 jca K HL W H F T G T R A P A ¬ P ˙ W F P = G P F P P s A ¬ s ˙ W ¬ s ˙ P ˙ F P s A ¬ s ˙ W
27 simp1l3 K HL W H F T G T R A P A ¬ P ˙ W F P = G P F P P s A ¬ s ˙ W ¬ s ˙ P ˙ F P F P = G P
28 simp3r K HL W H F T G T R A P A ¬ P ˙ W F P = G P F P P s A ¬ s ˙ W ¬ s ˙ P ˙ F P ¬ s ˙ P ˙ F P
29 1 2 3 4 5 cdlemd7 K HL W H F T G T R A P A ¬ P ˙ W s A ¬ s ˙ W F P = G P ¬ s ˙ P ˙ F P F R = G R
30 22 23 26 27 28 29 syl122anc K HL W H F T G T R A P A ¬ P ˙ W F P = G P F P P s A ¬ s ˙ W ¬ s ˙ P ˙ F P F R = G R
31 30 rexlimdv3a K HL W H F T G T R A P A ¬ P ˙ W F P = G P F P P s A ¬ s ˙ W ¬ s ˙ P ˙ F P F R = G R
32 21 31 mpd K HL W H F T G T R A P A ¬ P ˙ W F P = G P F P P F R = G R
33 11 32 pm2.61dane K HL W H F T G T R A P A ¬ P ˙ W F P = G P F R = G R