Metamath Proof Explorer


Theorem cdleme00a

Description: Part of proof of Lemma E in Crawley p. 113. (Contributed by NM, 14-Jun-2012)

Ref Expression
Hypotheses cdleme0.l ˙ = K
cdleme0.j ˙ = join K
cdleme0.m ˙ = meet K
cdleme0.a A = Atoms K
Assertion cdleme00a K HL P A Q A R A ¬ R ˙ P ˙ Q R P

Proof

Step Hyp Ref Expression
1 cdleme0.l ˙ = K
2 cdleme0.j ˙ = join K
3 cdleme0.m ˙ = meet K
4 cdleme0.a A = Atoms K
5 simp1 K HL P A Q A R A ¬ R ˙ P ˙ Q K HL
6 simp23 K HL P A Q A R A ¬ R ˙ P ˙ Q R A
7 simp21 K HL P A Q A R A ¬ R ˙ P ˙ Q P A
8 simp22 K HL P A Q A R A ¬ R ˙ P ˙ Q Q A
9 simp3 K HL P A Q A R A ¬ R ˙ P ˙ Q ¬ R ˙ P ˙ Q
10 1 2 4 atnlej1 K HL R A P A Q A ¬ R ˙ P ˙ Q R P
11 5 6 7 8 9 10 syl131anc K HL P A Q A R A ¬ R ˙ P ˙ Q R P