Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Norm Megill
Construction of a vector space from a Hilbert lattice
cdleme00a
Next ⟩
cdleme0aa
Metamath Proof Explorer
Ascii
Unicode
Theorem
cdleme00a
Description:
Part of proof of Lemma E in
Crawley
p. 113.
(Contributed by
NM
, 14-Jun-2012)
Ref
Expression
Hypotheses
cdleme0.l
⊢
≤
˙
=
≤
K
cdleme0.j
⊢
∨
˙
=
join
⁡
K
cdleme0.m
⊢
∧
˙
=
meet
⁡
K
cdleme0.a
⊢
A
=
Atoms
⁡
K
Assertion
cdleme00a
⊢
K
∈
HL
∧
P
∈
A
∧
Q
∈
A
∧
R
∈
A
∧
¬
R
≤
˙
P
∨
˙
Q
→
R
≠
P
Proof
Step
Hyp
Ref
Expression
1
cdleme0.l
⊢
≤
˙
=
≤
K
2
cdleme0.j
⊢
∨
˙
=
join
⁡
K
3
cdleme0.m
⊢
∧
˙
=
meet
⁡
K
4
cdleme0.a
⊢
A
=
Atoms
⁡
K
5
simp1
⊢
K
∈
HL
∧
P
∈
A
∧
Q
∈
A
∧
R
∈
A
∧
¬
R
≤
˙
P
∨
˙
Q
→
K
∈
HL
6
simp23
⊢
K
∈
HL
∧
P
∈
A
∧
Q
∈
A
∧
R
∈
A
∧
¬
R
≤
˙
P
∨
˙
Q
→
R
∈
A
7
simp21
⊢
K
∈
HL
∧
P
∈
A
∧
Q
∈
A
∧
R
∈
A
∧
¬
R
≤
˙
P
∨
˙
Q
→
P
∈
A
8
simp22
⊢
K
∈
HL
∧
P
∈
A
∧
Q
∈
A
∧
R
∈
A
∧
¬
R
≤
˙
P
∨
˙
Q
→
Q
∈
A
9
simp3
⊢
K
∈
HL
∧
P
∈
A
∧
Q
∈
A
∧
R
∈
A
∧
¬
R
≤
˙
P
∨
˙
Q
→
¬
R
≤
˙
P
∨
˙
Q
10
1
2
4
atnlej1
⊢
K
∈
HL
∧
R
∈
A
∧
P
∈
A
∧
Q
∈
A
∧
¬
R
≤
˙
P
∨
˙
Q
→
R
≠
P
11
5
6
7
8
9
10
syl131anc
⊢
K
∈
HL
∧
P
∈
A
∧
Q
∈
A
∧
R
∈
A
∧
¬
R
≤
˙
P
∨
˙
Q
→
R
≠
P