Metamath Proof Explorer


Theorem cdleme0aa

Description: Part of proof of Lemma E in Crawley p. 113. (Contributed by NM, 14-Jun-2012)

Ref Expression
Hypotheses cdleme0.l ˙ = K
cdleme0.j ˙ = join K
cdleme0.m ˙ = meet K
cdleme0.a A = Atoms K
cdleme0.h H = LHyp K
cdleme0.u U = P ˙ Q ˙ W
cdleme0.b B = Base K
Assertion cdleme0aa K HL W H P A Q A U B

Proof

Step Hyp Ref Expression
1 cdleme0.l ˙ = K
2 cdleme0.j ˙ = join K
3 cdleme0.m ˙ = meet K
4 cdleme0.a A = Atoms K
5 cdleme0.h H = LHyp K
6 cdleme0.u U = P ˙ Q ˙ W
7 cdleme0.b B = Base K
8 simp1l K HL W H P A Q A K HL
9 8 hllatd K HL W H P A Q A K Lat
10 7 4 atbase P A P B
11 10 3ad2ant2 K HL W H P A Q A P B
12 7 4 atbase Q A Q B
13 12 3ad2ant3 K HL W H P A Q A Q B
14 7 2 latjcl K Lat P B Q B P ˙ Q B
15 9 11 13 14 syl3anc K HL W H P A Q A P ˙ Q B
16 simp1r K HL W H P A Q A W H
17 7 5 lhpbase W H W B
18 16 17 syl K HL W H P A Q A W B
19 7 3 latmcl K Lat P ˙ Q B W B P ˙ Q ˙ W B
20 9 15 18 19 syl3anc K HL W H P A Q A P ˙ Q ˙ W B
21 6 20 eqeltrid K HL W H P A Q A U B