Metamath Proof Explorer
Description: Part of proof of Lemma E in Crawley p. 113. (Contributed by NM, 13-Jun-2012) (New usage is discouraged.)
|
|
Ref |
Expression |
|
Hypotheses |
cdleme0.l |
|
|
|
cdleme0.j |
|
|
|
cdleme0.m |
|
|
|
cdleme0.a |
|
|
|
cdleme0.h |
|
|
|
cdleme0.u |
|
|
|
cdleme0c.3 |
|
|
Assertion |
cdleme0dN |
|
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cdleme0.l |
|
| 2 |
|
cdleme0.j |
|
| 3 |
|
cdleme0.m |
|
| 4 |
|
cdleme0.a |
|
| 5 |
|
cdleme0.h |
|
| 6 |
|
cdleme0.u |
|
| 7 |
|
cdleme0c.3 |
|
| 8 |
1 2 3 4 5 7
|
lhpat2 |
|